In the context of human–robot collaborative shared environments, there has been an increase in the use of optical motion capture (OMC) systems for human motion tracking. The accuracy and precision of OMC technology need to be assessed in order to ensure safe human–robot interactions, but the accuracy specifications provided by manufacturers are easily influenced by various factors affecting the measurements. This article describes a new methodology for the metrological evaluation of a human–robot collaborative environment based on optical motion capture (OMC) systems. Inspired by the ASTM E3064 test guide, and taking advantage of an existing industrial robot in the production cell, the system is evaluated for mean error, error spread, and repeatability. A detailed statistical study of the error distribution across the capture area is carried out, supported by a Mann–Whitney U-test for median comparisons. Based on the results, optimal capture areas for the use of the capture system are suggested. The results of the proposed method show that the metrological characteristics obtained are compatible and comparable in quality to other methods that do not require the intervention of an industrial robot.
In this paper, an approach for the practical design of broadband amplifiers in hybrid technology is presented. It is based on the use of non-uniform transmission lines to implement impedance matching networks, which are synthesized exploiting the powerful optimization tools available in the most common computer-aided design software packages. The versatility of the proposed technique makes it suitable for the design of a wide variety of broadband amplifiers. Furthermore, it is easily implementable in most microwave simulators and allows a considerable design time reduction, since it can be applied in a systematic way and avoids the use of external tools. To validate the technique, it is applied to the design of a low noise amplifier using a single encapsulated transistor. A prototype was implemented, providing 10-dB flat gain from 1 to 12 GHz, noise figure under 2.5 dB, and acceptable input and output matching, which agrees with the simulation data.
Ground contact time (GCT) is one of the most relevant factors when assessing running performance in sports practice. In recent years, inertial measurement units (IMUs) have been widely used to automatically evaluate GCT, since they can be used in field conditions and are friendly and easy to wear devices. In this paper we describe the results of a systematic search, using the Web of Science, to assess what reliable options are available to GCT estimation using inertial sensors. Our analysis reveals that estimation of GCT from the upper body (upper back and upper arm) has rarely been addressed. Proper estimation of GCT from these locations could permit an extension of the analysis of running performance to the public, where users, especially vocational runners, usually wear pockets that are ideal to hold sensing devices fitted with inertial sensors (or even using their own cell phones for that purpose). Therefore, in the second part of the paper, an experimental study is described. Six subjects, both amateur and semi-elite runners, were recruited for the experiments, and ran on a treadmill at different paces to estimate GCT from inertial sensors placed at the foot (for validation purposes), the upper arm, and upper back. Initial and final foot contact events were identified in these signals to estimate the GCT per step, and compared to times estimated from an optical MOCAP (Optitrack), used as the ground truth. We found an average error in GCT estimation of 0.01 s in absolute value using the foot and the upper back IMU, and of 0.05 s using the upper arm IMU. Limits of agreement (LoA, 1.96 times the standard deviation) were [−0.01 s, 0.04 s], [−0.04 s, 0.02 s], and [0.0 s, 0.1 s] using the sensors on the foot, the upper back, and the upper arm, respectively.
The short-term prediction of a person’s trajectory during normal walking becomes necessary in many environments shared by humans and robots. Physics-based approaches based on Newton’s laws of motion seem best suited for short-term predictions, but the intrinsic properties of human walking conflict with the foundations of the basic kinematical models compromising their performance. In this paper, we propose a short-time prediction method based on gait biomechanics for real-time applications. This method relays on a single biomechanical variable, and it has a low computational burden, turning it into a feasible solution to implement in low-cost portable devices. We evaluate its performance from an experimental benchmark where several subjects walked steadily over straight and curved paths. With this approach, the results indicate a performance good enough to be applicable to a wide range of human–robot interaction applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.