The foam of a sparkling wine is a key parameter of its quality, and the main characteristic differentiating sparkling wines from the so-called still wines. Both foam formation and duration are directly related to the chemical composition of sparkling wines. This chapter reviews the most recent studies made to determine the influence of chemical compounds on the foamability and foam stability of sparkling wines. Foam properties of sparkling wines are ruled by a large number of molecules, but some compounds seem to be more relevant than others to explain their behavior. The content of total amino acids, polysaccharides, anthocyanins, coumaric acid, and isorhamnetin showed high correlation values with foam quality parameters. The alcohol content and the concentration of acid polysaccharides, proanthocyanidins and free SO 2 are the factors which most negatively affect foam quality. A recent study, by means of prediction models, has concluded that the different forms of malvidin show the highest influence on the foamability parameters in rosé sparkling wines, followed by amino acid compounds, while foam stability model was only predicted by polysaccharides rich in arabinose and galactose. These research findings provide industry with a better understanding of the compositional factors influencing the foam quality of sparkling wines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.