The lack of urban sustainability is a widespread deficiency in urban agglomerations. To achieve adequate land use, we present a methodology that allows for: 1) the identification of the impacts caused by urban expansion since 1956 to the present in Salamanca (Spain); and 2) the promotion of a more sustainable future in urban development. A multi-temporal assessment of land use was made by remote sensing, while sustainability criteria were analyzed using the multicriteria analysis (MCA) with Geographical Information Systems (GIS). In addition, we established recommendations for soil carbon management in semi-arid ecosystem soils that contribute to climate change mitigation. The results show an increase of the urbanized area from 3.8% to 22.3% in the studied period, identifying up to 15% of buildings in zones with some type of restriction. In 71% of the cases, urbanization caused the sealing of productive agricultural soils (2519 Ha), almost 20% of which were of the highest quality. In last few decades, an excessive increase of built-up areas in comparison to population dynamics was identified, which causes unnecessary soil sealing that affects the food production and the capacity to mitigate climate change by managing the carbon cycle in the soil.
Many different processes for manufacturing of magnetic particles are present in scientific literature. However, the large majority are not able to be applied to large-scale real operations. In this study, we present an experiment undertaken to determine advisable values and options for the main variables and factors for the application of the reverse co-precipitation method to produce magnetic particles for real environmental applications. In such, we have tried a conjugation of values/factors that has led to 12 main experiments and production of 12 different particles. After an initial study concerning their main characteristics, these 12 different particles were applied for the sorption removal of COD from real wastewater samples (efficiencies between 70% and 81%) and degradation of Methylene blue by Fenton reaction (degradation efficiencies up to 100%). The main conclusion from this work is that the best set of values depends on the target environmental application, and this set of values were determined for the two applications studied.
Soil protection and the increase and intensification of agricultural production require detailed knowledge of soil properties and their variability. On the other hand, the complexity associated with traditional soil mapping processes can lead to the implementation of inappropriate agricultural practices that degrade this resource. Therefore, it is necessary to use mapping techniques to provide more detailed information to farmers and managers. In this study, the geostatistical technique ordinary kriging was used to map the distribution of the most important edaphic properties (texture, nutrients content -N, P, K-, pH, organic carbon, water retention, COLE, carbonate content, and cation exchange capacity) from known sampled points, which allows inferring the value and distribution of the different edaphic parameters studied along the agricultural fields. The results obtained show after validation that the analysis of semivariograms is suitable for evaluating the distribution of the main soil parameters on a large scale, since it faithfully reflects their distribution and makes the ordinary kriging tool a suitable method for optimizing the resources available in soil mapping processes. In addition, the knowledge of these distributions made it possible to establish different recommendations for improving the management of the agricultural ecosystem, which will guarantee a higher agricultural yield as well as a better protection of the analyzed soils.
In recent years, the landscape has become another environmental resource, so it is important to incorporate it into planning actions. However, its broad sense of study has made it difficult to develop methodologies that precisely diagnose the state of the landscape and its management requirements, especially in dynamic spaces like urban areas. In order to develop a method capable of providing information that can be incorporated into environmental assessment and territorial planning tasks so that the needs of the landscape are taken into account in the decision-making stages, an objective methodology is presented based on the study of different parameters (biotic, abiotic and socioeconomic) analyzed in the field and subsequently geoprocessed through Geographic Information Systems according to their influence on the landscape. Through the proposed methodology it is possible to determine the quality, fragility and need of protection of the landscape, as well as to identify the diverse landscape units that form the landscape of a territory. Based on these results, a landscape diagnosis can be drawn up to quantify its overall and partial state, carry out monitoring analyses and make comparisons between different landscape units, so that management measures can be adopted according to the obtained scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.