Abnormal accumulation of ferritin was found to be associated with an autosomal dominant slowly progressing neurodegenerative disease clinically characterized by tremor, cerebellar ataxia, parkinsonism and pyramidal signs, behavioral disturbances, and cognitive decline. These symptoms may appear sequentially over a period of 4 decades. Pathologically, intranuclear and intracytoplasmic bodies were found in glia and subsets of neurons in the central nervous system as well as in extraneural tissue. Biochemical analyses of these bodies isolated from the striatum and cerebellar cortex revealed that ferritin light polypeptide (FTL) and ferritin heavy polypeptide (FTH1) were the main constituents. Molecular genetic studies revealed a 2-bp insertion mutation in exon 4 of the FTL gene. The resulting mutant polypeptide is predicted to have a carboxy terminus that is altered in amino-acid sequence and length. In tissue sections, the bodies were immunolabeled by anti-ferritin and anti-ubiquitin antibodies and were stained by Perls' method for ferric iron. Synthetic peptides homologous to the altered and wild-type carboxy termini were used to raise polyclonal antibodies. These novel antibodies as well as an antibody recognizing FTH1 immunolabeled the bodies. This study of this disorder has provided additional knowledge and insights in the growing area of ferritin-related neurodegeneration.
Increased iron levels and iron-mediated oxidative stress play an important role in the pathogenesis of many neurodegenerative diseases. The finding that mutations in the ferritin light polypeptide (FTL) gene cause a neurodegenerative disease known as neuroferritinopathy or hereditary ferritinopathy (HF) provided a direct connection between abnormal brain iron storage and neurodegeneration. HF is characterized by a severe movement disorder and by the presence of nuclear and cytoplasmic ferritin inclusion bodies in glia and neurons throughout the CNS and in tissues of multiple organ systems. Here we report that the expression in transgenic mice of a human FTL cDNA carrying a thymidine and cytidine insertion at position 498 (FTL498 -499InsTC) leads to the formation of nuclear and cytoplasmic ferritin inclusion bodies. As in HF, ferritin inclusions are seen in glia and neurons throughout the CNS as well as in cells of other organ systems. Our studies show histological, immunohistochemical, and biochemical similarities between ferritin inclusion bodies found in transgenic mice and in individuals with HF. Expression of the transgene in mice leads to a significant decrease in motor performance and a shorter life span, formation of ferritin inclusion bodies, misregulation of iron metabolism, accumulation of ubiquitinated proteins, and incorporation of elements of the proteasome into inclusions. This new transgenic mouse represents a relevant model of HF in which to study the pathways that lead to neurodegeneration in HF, to evaluate the role of iron mismanagement in neurodegenerative disorders, and to evaluate potential therapies for HF and related neurodegenerative diseases.
Cotton wool plaques (CWPs) are round lesions that lack a central amyloid core. CWPs have been observed in individuals affected by early-onset familial Alzheimer disease (FAD) associated with mutations in the presenilin 1 (PSEN1) gene. Here we present the characterization of the amyloid-beta (Abeta) peptides deposited in the brain of an individual affected by FAD carrying the novel missense (V261I) mutation in the PSEN1 gene. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry was used to determine the Abeta peptide species present in the cerebral and cerebellar cortices, in leptomeningeal vessels, and in CWPs isolated by laser microdissection (LMD). Our results indicate that amino-terminally truncated Abeta peptide species ending at residues 42 and 43 are the main Abeta peptides deposited in brain parenchyma and LMD-CWPs in association with the PSEN1 V261I mutation. Full-length Abeta1-42 and Abeta1-43 peptide species were underrepresented. CWPs were not found to be associated with vessels and did not contain Abeta1-40 peptides, the main component of the vascular deposits. Although Abeta deposits were present mostly in the form of CWPs in the cerebral cortex and as diffuse deposits in the cerebellar cortex, a similar array of amino-terminally truncated Abeta peptide species was seen in both cases. The biochemical data support the concept that parenchymal and vascular amyloid deposits are associated with a different array of Abeta peptide species. The generation and parenchymal deposition of highly insoluble amino-terminally truncated Abeta peptides may play an important role in the pathogenesis of AD and must be taken into consideration in developing new diagnostic and therapeutic strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.