The ζ subunit is a novel natural inhibitor of the α-proteobacterial F1FO-ATPase described originally in Paracoccus denitrificans. To characterize the mechanism by which this subunit inhibits the F1FO nanomotor, the ζ subunit of Paracoccus denitrificans (Pd-ζ) was analyzed by the combination of kinetic, biochemical, bioinformatic, proteomic, and structural approaches. The ζ subunit causes full inhibition of the sulfite-activated PdF1-ATPase with an apparent IC50 of 270 nM by a mechanism independent of the ε subunit. The inhibitory region of the ζ subunit resides in the first 14 N-terminal residues of the protein, which protrude from the 4-α-helix bundle structure of the isolated ζ subunit, as resolved by NMR. Cross-linking experiments show that the ζ subunit interacts with rotor (γ) and stator (α, β) subunits of the F1-ATPase, indicating that the ζ subunit hinders rotation of the central stalk. In addition, a putatively regulatory nucleotide-binding site was found in the ζ subunit by isothermal titration calorimetry. Together, the data show that the ζ subunit controls the rotation of F1FO-ATPase by a mechanism reminiscent of, but different from, those described for mitochondrial IF1 and bacterial ε subunits where the 4-α-helix bundle of ζ seems to work as an anchoring domain that orients the N-terminal inhibitory domain to hinder rotation of the central stalk.
Many marine and pathogenic bacteria have a unique sodium-translocating NADH:ubiquinone oxidoreductase (Na(+)-NQR), which generates an electrochemical Na(+) gradient during aerobic respiration. Na(+)-NQR consists of six subunits (NqrA-F) and contains five known redox cofactors: two covalently bound FMNs, one noncovalently bound FAD, one riboflavin, and one 2Fe-2S center. A stable neutral flavin-semiquinone radical is observed in the air-oxidized enzyme, while the NADH- or dithionite-reduced enzyme exhibits a stable anionic flavin-semiquinone radical. The NqrF subunit has been implicated in binding of both the 2Fe-2S cluster and the FAD. Four conserved cysteines (C70, C76, C79, and C111) in NqrF match the canonical 2Fe-2S motif, and three conserved residues (R210, Y212, S246) have been predicted to be part of a flavin binding domain. In this work, these two motifs have been altered by site-directed mutagenesis of individual residues and are confirmed to be essential for binding, respectively, the 2Fe-2S cluster and FAD. EPR spectra of the FAD-deficient mutants in the oxidized and reduced forms exhibit neutral and anionic flavo-semiquinone radical signals, respectively, demonstrating that the FAD in NqrF is not the source of either radical signal. In both the FAD and 2Fe-2S center mutants the line widths of the neutral and anionic flavo-semiquinone EPR signals are unchanged from the wild-type enzyme, indicating that neither of these centers is nearby or coupled to the radicals. Measurements of steady-state turnover using NADH, Q-1, and the artificial electron acceptor ferricyanide strongly support an electron transport pathway model in which the noncovalently bound FAD in the NqrF subunit is the initial electron acceptor and electrons then flow to the 2Fe-2S center.
The Na؉ -pumping NADH-ubiquinone oxidoreductase has six polypeptide subunits (NqrA-F) and a number of redox cofactors, including a noncovalently bound FAD and a 2Fe-2S center in subunit F, covalently bound FMNs in subunits B and C, and a noncovalently bound riboflavin in an undisclosed location. The FMN cofactors in subunits B and C are bound to threonine residues by phosphoester linkages. A neutral flavin-semiquinone radical is observed in the oxidized enzyme, whereas an anionic flavin-semiquinone has been reported in the reduced enzyme. For this work, we have altered the binding ligands of the FMNs in subunits B and C by replacing the threonine ligands with other amino acids, and we studied the resulting mutants by EPR and electron nuclear double resonance spectroscopy. We conclude that the sodium-translocating NADH:quinone oxidoreductase forms three spectroscopically distinct flavin radicals as follows: 1) a neutral radical in the oxidized enzyme, which is observed in all of the mutants and most likely arises from the riboflavin; 2) an anionic radical observed in the fully reduced enzyme, which is present in wild type, and the NqrC-T225Y mutant but not the NqrB-T236Y mutant; 3) a second anionic radical, seen primarily under weakly reducing conditions, which is present in wild type, and the NqrB-T236Y mutant but not the NqrC-T225Y mutant. Thus, we can tentatively assign the first anionic radical to the FMN in subunit B and the second to the FMN in subunit C. The second anionic radical has not been reported previously. In electron nuclear double resonance spectra, it exhibits a larger line width and larger 8␣-methyl proton splittings, compared with the first anionic radical.The Na ϩ -translocating NADH:quinone oxidoreductase (Na ϩ -NQR) 3 is a primary sodium pump present in the inner membrane of many marine and pathogenic bacteria, including Vibrio alginolyticus, Vibrio harveyi, Haemophilus influenzae, and Vibrio cholerae. This enzyme oxidizes NADH and reduces ubiquinone as the first step in the aerobic respiratory chain. The free energy from the electron transfer reaction is harnessed to the translocation of sodium ions across the membrane, creating a sodium motive force, which is used by the cell for metabolic work (1-8).Na ϩ -NQR is made of six subunits that accommodate several cofactors as follows: one noncovalently bound FAD and a 2Fe-2S center in subunit F; two covalently bound FMNs in subunits B and C; and riboflavin in an unknown location (1, 9 -13). The covalently bound FMNs in Na ϩ -NQR are bound to the protein by phosphoester bonds between the phosphate of the FMN and the -OH group of a threonine residue (Thr-236 in NqrB and Thr-225 in NqrC). In both cases the threonine is part of a highly conserved sequence of amino acids, SGAT (11,12,14). The role of these FMNs in electron transfer and in Na ϩ translocation has not been elucidated.An unusual feature of Na ϩ -NQR is the occurrence of more than one flavin radical. In a previous EPR spectroscopy study, we showed that the air-oxidized enzyme (resting s...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.