The developments of the open-source chemistry software environment since spring 2020 are described,
with a focus on novel functionalities accessible in the stable branch
of the package or via interfaces with other packages. These developments
span a wide range of topics in computational chemistry and are presented
in thematic sections: electronic structure theory, electronic spectroscopy
simulations, analytic gradients and molecular structure optimizations,
ab initio molecular dynamics, and other new features. This report
offers an overview of the chemical phenomena and processes can address, while showing that is an attractive platform for state-of-the-art
atomistic computer simulations.
Herein we describe
Hyperion
, a new program for computing
relativistic picture-change-corrected magnetic resonance parameters
from scalar relativistic active space wave functions, with or without
spin–orbit coupling (SOC) included
a posteriori
.
Hyperion
also includes a new orbital decomposition method
for assisting active space selection for calculations of hyperfine
coupling. For benchmarking purposes, we determine hyperfine coupling
constants of selected alkali metal, transition metal, and lanthanide
atoms, based on complete active space self-consistent field spin–orbit
calculations in OpenMolcas. Our results are in excellent agreement
with experimental data from atomic spectroscopy as well as theoretical
predictions from four-component relativistic calculations.
In this article the recent developments of the open-source OpenMolcas chemistry software environment, since spring 2020, are described, with the main focus on novel functionalities that are accessible in the stable branch of the package and/or via interfaces with other packages. These community developments span a wide range of topics in computational chemistry, and are presented in thematic sections associated with electronic structure theory, electronic spectroscopy simulations, analytic gradients and molecular structure optimizations, ab initio molecular dynamics, and other new features. This report represents a useful summary of these developments, and it offers a solid overview of the chemical phenomena and processes that OpenMolcas can address, while showing that OpenMolcas is an attractive platform for state-of-the-art atomistic computer simulations.
In this article the recent developments of the open-source OpenMolcas chemistry software environment, since spring 2020, are described, with the main focus on novel functionalities that are accessible in the stable branch of the package and/or via interfaces with other packages. These community developments span a wide range of topics in computational chemistry, and are presented in thematic sections associated with electronic structure theory, electronic spectroscopy simulations, analytic gradients and molecular structure optimizations, ab initio molecular dynamics, and other new features. This report represents a useful summary of these developments, and it offers a solid overview of the chemical phenomena and processes that OpenMolcas can address, while showing that OpenMolcas is an attractive platform for state-of-the-art atomistic computer simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.