The data indicated that the effects on quality and storability were dependent on the method of treatment used, and antagonistic yeast was the best microfungal control because of it did not cause any disorders or negative effects on apple quality during storage.
The study demonstrated the feasibility of the near infrared (NIR) spectroscopy use for hazelnut-cultivar sorting. Hazelnut spectra were acquired from 600 fruit for each cultivar sample, two diffuse reflectance spectra were acquired from opposite sides of the same hazelnut. Spectral data were transformed into absorbance before the computations. A different variety of spectral pretreatments were applied to extract characteristics for the classification. An iterative Linear Discriminant Analysis (LDA) algorithm was used to select a relatively small set of variables to correctly classify samples. The optimal group of features selected for each test was analyzed using Partial Least Squares Discriminant Analysis (PLS-DA). The spectral region most frequently chosen was the 1980-2060 nm range, which corresponds to best differentiation performance for a total minimum error rate lower than 1.00%. This wavelength range is generally associated with stretching and bending of the N-H functional group of amino acids and proteins. The feasibility of using NIR Spectroscopy to distinguish different hazelnut cultivars was demonstrated.
The study demonstrated the feasibility of the near infrared (NIR) spectroscopy use for hazelnut-cultivar sorting. Hazelnut spectra were acquired from 600 fruit for each cultivar sample, two diffuse reflectance spectra were acquired from opposite sides of the same hazelnut. Spectral data were transformed into absorbance before the computations. A different variety of spectral pretreatments were applied to extract characteristics for the classification. An iterative Linear Discriminant Analysis (LDA) algorithm was used to select a relatively small set of variables to correctly classify samples. The optimal group of features selected for each test was analyzed using Partial Least Squares Discriminant Analysis (PLS-DA). The spectral region most frequently chosen was the 1980-2060 nm range, which corresponds to best differentiation performance for a total minimum error rate lower than 1.00%. This wavelength range is generally associated with stretching and bending of the N-H functional group of amino acids and proteins. The feasibility of using NIR Spectroscopy to distinguish different hazelnut cultivars was demonstrated. 'Tonda Gentile Romana' plus 'Nocchione' and 'Tonda di Giffoni'.
Materials and methodsWhole hazelnut kernels (round shape cvs. 'Tonda Gentile Romana', 'Nocchione' and 'Tonda di Giffoni') were obtained from the Assofrutti
The study demonstrated the feasibility of the near infrared (NIR) spectroscopy use for hazelnut-cultivar sorting. Hazelnut spectra were acquired from 600 fruit for each cultivar sample, two diffuse reflectance spectra were acquired from opposite sides of the same hazelnut. Spectral data were transformed into absorbance before the computations. A different variety of spectral pretreatments were applied to extract characteristics for the classification. An iterative Linear Discriminant Analysis (LDA) algorithm was used to select a relatively small set of variables to correctly classify samples. The optimal group of features selected for each test was analyzed using Partial Least Squares Discriminant Analysis (PLS-DA). The spectral region most frequently chosen was the 1980-2060 nm range, which corresponds to best differentiation performance for a total minimum error rate lower than 1.00%. This wavelength range is generally associated with stretching and bending of the N-H functional group of amino acids and proteins. The feasibility of using NIR Spectroscopy to distinguish different hazelnut cultivars was demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.