Nonalcoholic fatty liver disease (NAFLD) is an emerging disease with a broad spectrum of liver conditions. The complex molecular pathogenesis of NAFLD is still unclear. In this study, we conducted an analysis of microRNA (miRNA) expression profiles in liver of rats made NAFLD by different diets. To this aim, Sprague-Dawley rats were fed ad libitum for 3 months with different diets: standard diet (SD), diet enriched in fats and low in carbohydrates (HFD), SD with high fructose (SD-HF) and diet with high levels of fats and fructose (HFD-HF). Our results demonstrated that the treatment with different dietetic regimens caused a significant increase of the body weight and the alteration of some metabolic parameters compared with control animals, as well as various liver injuries. The miRNAs analysis showed the significant downregulation of three miRNAs (miR-122, miR-451 and miR-27) and the upregulation of miR-200a, miR-200b and miR-429 in HFD, SD-HF and HFD-HF rats. Besides, miR-21 expression was significantly decreased only in fructose-enriched diets. These miRNAs target molecules involved in the control of lipid and carbohydrate metabolism, signal transduction, cytokine and chemokine-mediated signaling pathway and apoptosis. Western blot analysis of PKCd, LITAF, ALDOLASE-A, p38MAPK, PTEN, LIPIN1, EPHRIN-A1, EPHA2 and FLT1 showed a diet-induced deregulation of all these proteins. Interestingly, the expression pattern of LITAF, PTEN, LIPIN1, EPHRIN-A1, EPHA2 and FLT1 might be well explained by the trend of their specific mRNAs, by potentially regulatory miRNAs, or both. In conclusion, we highlight for the first time the potential involvement of novel determinants (miRNAs and proteins) in the molecular pathogenesis of diet-induced NAFLD.
The advent of next generation sequencing revealed that a fraction of transcribed RNAs (short and long RNAs) is non-coding. Long non-coding RNAs (lncRNAs) have a crucial role in regulating gene expression and in epigenetics (chromatin and histones remodeling). LncRNAs may have different roles: gene activators (signaling), repressors (decoy), cis and trans gene expression regulators (guides) and chromatin modificators (scaffolds) without the need to be mutually exclusive. LncRNAs are also implicated in a number of diseases. The huge amount of inhomogeneous data produced so far poses several bioinformatics challenges spanning from the simple annotation to the more complex functional annotation. In this review, we report and discuss several bioinformatics resources freely available and dealing with the study of lncRNAs. To our knowledge, this is the first review summarizing all the available bioinformatics resources on lncRNAs appeared in the literature after the completion of the human genome project. Therefore, the aim of this review is to provide a little guide for biologists and bioinformaticians looking for dedicated resources, public repositories and other tools for lncRNAs functional analysis.
All microRNA (miRNA) target—finder algorithms return lists of candidate target genes. How valid is that output in a biological setting? Transcriptome analysis has proven to be a useful approach to determine mRNA targets. Time course mRNA microarray experiments may reliably identify downregulated genes in response to overexpression of specific miRNA. The approach may miss some miRNA targets that are principally downregulated at the protein level. However, the high-throughput capacity of the assay makes it an effective tool to rapidly identify a large number of promising miRNA targets. Finally, loss and gain of function miRNA genetics have the clear potential of being critical in evaluating the biological relevance of thousands of target genes predicted by bioinformatic studies and to test the degree to which miRNA-mediated regulation of any “validated” target functionally matters to the animal or plant.
MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression through the binding of the 3′ untranslated region (3′UTR) of specific mRNAs. MiRNAs are post-transcriptional regulators and determine the repression of translation processes or the degradation of mRNA targets. Recently, another kind of miRNA-mediated regulation of translation (repression or activation) involving the binding of miRNA to the 5′UTR of target gene has been reported. The possible interactions and the mechanism of action have been reported in many works that we reviewed here. Moreover, we discussed also the available bioinformatics tools for predicting the miRNA binding sites in the 5′UTR and public databases collecting this information.
Dendritic cells (DCs IMPORTANCEThis study provides new evidence for the molecular mechanisms and signaling pathways triggered by HIV-1 gp120 in human DCs in the absence of productive infection, emphasizing a role of aberrant signaling in early virus-host interaction, contributing to viral pathogenesis. We identified STAT3 as a key component in the gp120-mediated signaling cascade involving MAPK and NF-B components and ultimately leading to IL-6 secretion. STAT3 now is recognized as a key regulator of DC functions. Thus, the identification of this transcription factor as a signaling molecule mediating some of gp120's biological effects unveils a new mechanism by which HIV-1 may deregulate DC functions and contribute to AIDS pathogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.