In this paper we study a nonlinear multi-dimensional partial differential equation, namely, a generalized second extended (3+1)-dimensional Jimbo-Miwa equation. We perform symmetry reductions of this equation until it reduces to a nonlinear fourth-order ordinary differential equation. The general solution of this ordinary differential equation is obtained in terms of the Weierstrass zeta function. Also travelling wave solutions are derived using the simplest equation method. Finally, the conservation laws of the underlying equation are computed by employing the conservation theorem due to Ibragimov, which include conservation of energy and conservation of momentum laws.
We study a nonlinear evolution partial differential equation, namely, the (2+1)-dimensional Boussinesq equation. For the first time Lie symmetry method together with simplest equation method is used to find the exact solutions of the (2+1)-dimensional Boussinesq equation. Furthermore, the new conservation theorem due to Ibragimov will be utilized to construct the conservation laws of the (2+1)-dimensional Boussinesq equation.
We study the generalized (2+1)-Zakharov-Kuznetsov (ZK) equation of time dependent variable coefficients from the Lie group-theoretic point of view. The Lie point symmetry generators of a special form of the class of equations are derived. We classify the Lie point symmetry generators to obtain the optimal system of onedimensional subalgebras of the Lie symmetry algebras. These subalgebras are then used to construct a number of symmetry reductions and exact group-invariant solutions to the underlying equation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.