During braking process, the kinetic energy of vehicle reduces and gets converted in thermal energy due to friction between disk and brake pads. The disk brake is used to retard the motion of vehicle by pressing brake pads against disk rotors. The frequent braking or panic braking results in overheating of brake disks which may result in brake fade. It is therefore essential to test newer materials which are more effective and possess better heat transfer characteristics than conventional cast iron material. The current research investigates the application of Al MMC material for ATV disk brake using experimental and numerical techniques. The numerical analysis is conducted on both conventional cast iron and Al MMC disk brake under steady state conditions and dynamic conditions. The dynamic condition testing involved testing of disk brake with externally flowing air at 2.5m/s and 5m/s using techniques of Computational Fluid Dynamics (CFD). The CAD model of ATV disk brake is developed in Creo design software and CFD analysis is conducted using ANSYS CFX. The turbulence model used for analysis is RNG k-epsilon. The temperature and heat flux are determined for disk brake under steady state and dynamic conditions. The results have shown that disk brake made from Al MMC possess better heat transfer characteristics as compared to conventional cast iron and cooling time also reduces with increase in external air speed.
With increase in energy requirement, the researchers are looking for energy efficient passive ventilation techniques. The current design concept is based on environment sustainability and use of renewable energy sources is preferred over conventional energy sources. The current research investigates the wind catcher design with cooling pads using techniques of Computational Fluid Dynamics. The CAD model of wind catcher is designed using Creo design software and CFD analysis is conducted using ANSYS CFX software. The CFD analysis is directed at different air inlet velocities and SSG Reynolds stress turbulence model under steady state thermal conditions for both side open design and singe side open designs. The cooling pads have successfully reduced temperature up to 1.65 degrees for single side opening and 2.86 degrees for double side opening design. Maximum air flow rate is achieved with higher air inlet velocities for both design types.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.