Abstract. This paper analyzes the kinematics of planar tensegrity manipulators made of two Snelson's X-shape mechanisms in series. The variable instantaneous center of rotation of each mechanism renders the kinematic analysis of the resulting manipulator more challenging. A general formulation of the direct kinematics is set. A method is proposed to solve the inverse kinematic problem in a symbolic way and up to four inverse kinematic solutions are found. The singularities of the manipulator are shown to divide the joint space into two singularity-free components, showing for the first time a planar positioning manipulator that can be cuspidal. The workspace is determined and plotted for different values of the geometric parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.