Some potential mechanisms by which bone cells sense mechanical loads are described and hypotheses concerning the functioning of these mechanisms are explored. It is well known that bone tissue adapts its structure to its mechanical load environment. Recent research has illuminated the biological response of bone to mechanical loading at the cellular level, but the precise mechanosensory system that signals bone cells to deposit or resorb tissue has not been identified. The purpose of this paper is to describe the current status of this research and to suggest some possible mechanosensory systems by which bone cells might sense environmental loads.
Analysis of published odontometric data on human dental sexual dimorphism indicates that this characteristic is most clearly expressed by the canine teeth. Review of the several processes involved in coronal odontogenesis suggests that such dimorphism is related to an absolutely longer period of amelogenesis for both deciduous and permanent dentitions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.