This paper reports for the first time the incorporation of in-situ reduced graphene oxide (rGO) into geopolymers. The resulting rGO-geopolymeric composites are easy to manufacture and exhibit excellent mechanical properties. Geopolymers with graphene oxide (GO) concents of 0.00, 0.10, 0.35 and 0.50% by weight were fabricated. The functional groups, morphology, void filling mechanisms and mechanical properties of the composites were determined. The Fourier transform infrared (FTIR) spectra revealed that the alkaline solution reduced the hydroxyl/carbonyl groups of GO by deoxygenation and/or dehydration. Concomitantly, the spectral absorbance related to silica type cross-linking increased in the spectra. The scanning electron microscope (SEM) micrographs indicated that rGO altered the morphology of geopolymers from a porous nature to a substantially pore filled morphology with increased mechanical properties. The flexural tests showed that 0.35-wt% rGO produced the highest flexural strength, Young’s modulus and flexural toughness and they were increased by 134%, 376% and 56%, respectivel
The reduction of graphene oxide during the processing of fly ash-based geopolymers offers a completely new way of developing low-cost multifunctional materials with significantly improved mechanical and electrical properties for civil engineering applications such as bridges, buildings and roads. In this paper, we present for the first time the self-sensing capabilities of fly ash-based geopolymeric composites containing in situ reduced graphene oxide (rGO). Geopolymeric composites with rGO concentrations of 0.0, 0.1 and 0.35% by weight were prepared and their morphology and conductivity were determined. The piezoresistive effect of the rGO-geopolymeric composites was also determined under tension and compression. The Fourier transform infrared spectroscopy (FTIR) results indicate that the rGO sheets can easily be reduced during synthesis of geopolymers due to the effect of the alkaline solution on the functional groups of GO. The scanning electron microscope (SEM) images showed that the majority of pores and voids within the geopolymers were significantly reduced due to the addition of rGO. The rGO increased the electrical conductivity of the fly ash-based rGOgeopolymeric composites from 0.77 S m −1 at 0.0 wt% to 2.38 S m −1 at 0.35 wt%. The rGO also increased the gauge factor by as much as 112% and 103% for samples subjected to tension and compression, respectively.
Fourier‐transform mid‐infrared (FT‐MIR) spectroscopy is a high‐throughput, cost‐effective method to quantify nutritional traits, such as total protein and sulfur‐containing amino acid (SAA) concentrations, in plant matter. This study used the spectroscopic technique FT‐MIR coupled with attenuated total internal reflectance sampling interface to develop multivariate models for total protein concentration in chickpea (Cicer arietinum L.), dry pea (Pisum sativum L.), and lentil (Lens culinaris Medik.), in addition to SAA concentration in lentil. Total nitrogen data from combustion analysis and SAA data from high‐performance liquid chromatography analysis following acid hydrolysis were used for model calibration and validation. Models for the total protein concentration of chickpea (calibration root mean square error [RMSE] = 0.093, R2 = 0.948, prediction RMSE = 0.10), dry pea (calibration RMSE = 0.096, R2 = 0.845, prediction RMSE = 0.093), and lentil (calibration RMSE = 0.13, R2 = 0.845, prediction RMSE = 0.11) utilized infrared regions associated with protein structures, namely amide bands A, I, and II. In sulfur‐related models for lentil total SAA (calibration RMSE = 0.014, R2 = 0.827, prediction RMSE = 0.022) and methionine (calibration RMSE = 0.0075, R2 = 0.815, prediction RMSE = 0.014) models utilized the C‐S and S‐CH3 stretching and bending bands. Study findings support the conclusion that FT‐MIR spectroscopy is a promising high‐throughput and cost‐effective phenotyping technique that will allow quantifying protein traits quickly and easily in pulse crops.
Chickpea is a highly nutritious pulse crop with low digestible carbohydrates (40–60%), protein (15–22%), essential fats (4–8%), and a range of minerals and vitamins. The fatty acid composition of the seed adds value because fats govern the texture, shelf-life, flavor, aroma, and nutritional composition of chickpea-based food products. Therefore, the biofortification of essential fatty acids has become a nutritional breeding target for chickpea crop improvement programs worldwide. This paper examines global chickpea production, focusing on plant lipids, their functions, and their benefits to human health. In addition, this paper also reviews the chemical analysis of essential fatty acids and possible breeding targets to enrich essential fatty acids in chickpea (Cicer arietinum) biofortification. Biofortification of chickpea for essential fatty acids within safe levels will improve human health and support food processing to retain the quality and flavor of chickpea-based food products. Essential fatty acid biofortification is possible by phenotyping diverse chickpea germplasm over suitable locations and years and identifying the candidate genes responsible for quantitative trait loci mapping using genome-wide association mapping.
The properties of dried (but not calcined) coprecipitated nickel ceria systems have been investigated in terms of their hydrogen emission characteristics following activation in hydrogen. XRD and BET data obtained on the powders show similarities to calcined ceria but it is likely that the majority of the material produced by the coprecipitation process is largely of an amorphous nature. XPS data indicate very little nickel is present on the outermost surface of the particles. Nevertheless, the thermal analytical techniques (TGA, DSC and TPD-MS) indicate that the hydrogen has access to the catalyst present and the nickel is able to generate hydrogen species capable of interacting with the support. Both unactivated and activated materials show two hydrogen emission features, viz. low temperature and high temperature emissions (LTE and HTE, respectively) over the temperature range 50 and 500 degrees C. A clear effect of hydrogen interaction with the material is that the activated sample not only emits much more hydrogen than the corresponding unactivated one but also at lower temperatures. H(2) dissociation occurs on the reduced catalyst surface and the spillover mechanism transfers this active hydrogen into the ceria, possibly via the formation and migration of OH(-) species. The amount of hydrogen obtained (~0.24 wt%) is approximately 10x higher than those observed for calcined materials and would suggest that the amorphous phase plays a critical role in this process. The affiliated emissions of CO and CO(2) with that of the HTE hydrogen (and consumption of water) strongly suggests a proportion of the hydrogen emission at this point arises from the water gas shift type reaction. It has not been possible from the present data to delineate between the various hydrogen storage mechanisms reported for ceria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.