With the recent resurgence of vector-borne diseases due to urbanization and development there is an urgent need to understand the dynamics of vector-borne diseases in rapidly changing urban environments. For example, many empirical studies have produced the disturbing finding that diseases continue to persist in modern city centers with zero or low rates of transmission. We develop spatial models of vector-borne disease dynamics on a network of patches to examine how the movement of humans in heterogeneous environments affects transmission. We show that the movement of humans between patches is sufficient to maintain disease persistence in patches with zero transmission. We construct two classes of models using different approaches: (i) Lagrangian models that mimic human commuting behavior and (ii) Eulerian models that mimic human migration. We determine the basic reproduction number R0 for both modeling approaches. We show that for both approaches that if the disease free equilibrium is stable (R0 < 1) then it is globally stable and if the disease free equilibrium is unstable (R0 > 1) then there exists a unique positive (endemic) equilibrium that is globally stable among positive solutions. Finally, we prove in general that Lagrangian and Eulerian modeling approaches are not equivalent. The modeling approaches presented provide a framework to explore spatial vector-borne disease dynamics and control in heterogeneous environments. As an example, we consider two patches in which the disease dies out in both patches when there is no movement between them. Numerical simulations demonstrate that the disease becomes endemic in both patches when humans move between the two patches.
In this paper we introduce a new method to design control laws for nonlinear, underactuated systems. Our method produces an infinite-dimensional family of control laws, whereas most control techniques only produce a finite-dimensional family. These control laws each come with a natural Lyapunov function. The inverted pendulum cart is used as an example. In addition, we construct an abstract system that is open-loop unstable and cannot be stabilized using any linear control law and demonstrate that our method produces a stabilizing control law.
In this paper we consider two generalizations of the Skyrme model. One is a variational problem for maps from a compact 3-manifold to a compact Lie group. The other is a variational problem for flat connections. We describe the path components of the configuration spaces of smooth fields for each of the variational problems. We prove that the invariants separating the path components are well-defined for (not necessarily smooth) fields with finite Skyrme energy. We prove that for every possible value of these invariants there exists a minimizer of the Skyrme functional. Throughout the paper we emphasize the importance of holonomy in the Skyrme model. Some of the results may be useful in other contexts. In particular, we define the holonomy of a distributionally flat L 2 loc connection; the local developing maps for such connections need not be continuous.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.