The ontogenetic development of human vision and the real-time neural processing of visual input exhibit a striking similarity—a sensitivity toward spatial frequencies that progresses in a coarse-to-fine manner. During early human development, sensitivity for higher spatial frequencies increases with age. In adulthood, when humans receive new visual input, low spatial frequencies are typically processed first before subsequent processing of higher spatial frequencies. We investigated to what extent this coarse-to-fine progression might impact visual representations in artificial vision and compared this to adult human representations. We simulated the coarse-to-fine progression of image processing in deep convolutional neural networks (CNNs) by gradually increasing spatial frequency information during training. We compared CNN performance after standard and coarse-to-fine training with a wide range of datasets from behavioral and neuroimaging experiments. In contrast to humans, CNNs that are trained using the standard protocol are very insensitive to low spatial frequency information, showing very poor performance in being able to classify such object images. By training CNNs using our coarse-to-fine method, we improved the classification accuracy of CNNs from 0% to 32% on low-pass-filtered images taken from the ImageNet dataset. The coarse-to-fine training also made the CNNs more sensitive to low spatial frequencies in hybrid images with conflicting information in different frequency bands. When comparing differently trained networks on images containing full spatial frequency information, we saw no representational differences. Overall, this integration of computational, neural, and behavioral findings shows the relevance of the exposure to and processing of inputs with variation in spatial frequency content for some aspects of high-level object representations.
Methods for the analysis of neuroimaging data have advanced significantly since the beginning of neuroscience as a scientific discipline. Today, sophisticated statistical procedures allow us to examine complex multivariate patterns, however most of them are still constrained by assuming inherent linearity of neural processes. Here, we discuss a group of machine learning methods, called deep learning, which have drawn much attention in and outside the field of neuroscience in recent years and hold the potential to surpass the mentioned limitations. Firstly, we describe and explain the essential concepts in deep learning: the structure and the computational operations that allow deep models to learn. After that, we move to the most common applications of deep learning in neuroimaging data analysis: prediction of outcome, interpretation of internal representations, generation of synthetic data and segmentation. In the next section we present issues that deep learning poses, which concerns multidimensionality and multimodality of data, overfitting and computational cost, and propose possible solutions. Lastly, we discuss the current reach of DL usage in all the common applications in neuroimaging data analysis, where we consider the promise of multimodality, capability of processing raw data, and advanced visualization strategies. We identify research gaps, such as focusing on a limited number of criterion variables and the lack of a well-defined strategy for choosing architecture and hyperparameters. Furthermore, we talk about the possibility of conducting research with constructs that have been ignored so far or/and moving toward frameworks, such as RDoC, the potential of transfer learning and generation of synthetic data.
The ontogenetic development of human vision, and the real-time neural processing of visual input, both exhibit a striking similarity – a sensitivity towards spatial frequencies that progress in a coarse-to-fine manner. During early human development, sensitivity for higher spatial frequencies increases with age. In adulthood, when humans receive new visual input, low spatial frequencies are typically processed first before subsequently guiding the processing of higher spatial frequencies. We investigated to what extent this coarse-to-fine progression might impact visual representations in artificial vision and compared this to adult human representations. We simulated the coarse-to-fine progression of image processing in deep convolutional neural networks (CNNs) by gradually increasing spatial frequency information during training. We compared CNN performance, after standard and coarse-to-fine training, with a wide range of datasets from behavioural and neuroimaging experiments. In contrast to humans, CNNs that are trained using the standard protocol are very insensitive to low spatial frequency information, showing very poor performance in being able to classify such object images. By training CNNs using our coarse-to-fine method, we improved the classification accuracy of CNNs from 0% to 32% on low-pass filtered images taken from the ImageNet dataset. When comparing differently trained networks on images containing full spatial frequency information, we saw no representational differences. Overall, this integration of computational, neural, and behavioural findings shows the relevance of the exposure to and processing of input with a variation in spatial frequency content for some aspects of high-level object representations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.