By exploiting the extremely large effective cross sections (10 217 10 216 cm 2 ͞molecule) available from surface-enhanced Raman scattering (SERS), we achieved the first observation of single molecule Raman scattering. Measured spectra of a single crystal violet molecule in aqueous colloidal silver solution using one second collection time and about 2 3 10 5 W͞cm 2 nonresonant near-infrared excitation show a clear "fingerprint" of its Raman features between 700 and 1700 cm 21. Spectra observed in a time sequence for an average of 0.6 dye molecule in the probed volume exhibited the expected Poisson distribution for actually measuring 0, 1, 2, or 3 molecules.
Abstract. The numerical implementation of an ocean model based on the incompressible Navier Stokes equations which is designed for studies of the ocean circulation on horizontal scales less than the depth of the ocean right up to global scale is described. A "pressure correction" method is used which is solved as a Poisson equation for the pressure field with Neumann boundary conditions in a geometry as complicated as that of the ocean basins. A major objective of the study is to make this inversion, and hence nonhydrostatic ocean modeling, efficient on parallel computers. The pressure field is separated into surface, hydrostatic, and nonhydrostatic components. First, as in hydrostatic models, a two-dimensional problem is inverted for the surface pressure which is then made use of in the three-dimensional inversion for the nonhydrostatic pressure. Preconditioned conjugate-gradient iteration is used to invert symmetric elliptic operators in both two and three dimensions. Physically motivated preconditioners are designed which are efficient at reducing computation and minimizing communication between processors. Our method exploits the fact that as the horizontal scale of the motion becomes very much larger than the vertical scale, the motion becomes more and more hydrostatic and the threedimensional Poisson operator becomes increasingly anisotropic and dominated by the vertical axis. Accordingly, a preconditioner is used which, in the hydrostatic limit, is an exact integral of the Poisson operator and so leads to a single algorithm that seamlessly moves from nonhydrostatic to hydrostatic limits. Thus in the hydrostatic limit the model is "fast," competitive with the fastest ocean climate models in use today based on the hydrostatic primitive equations. But as the resolution is increased, the model dynamics asymptote smoothly to the Navier Stokes equations and so can be used to address smallscale processes. A "finite-volume" approach is employed to discretize the model in space in which property fluxes are defined normal to faces that delineate the volumes. The method makes possible a novel treatment of the boundary in which cells abutting the bottom or coast may take on irregular shapes and be "shaved" to fit the boundary. The algorithm can conveniently exploit massively parallel computers and suggests a domain decomposition which allocates vertical columns of ocean to each processing unit. The resulting model, which can handle arbitrarily complex geometry, is efficient and scalable and has been mapped on to massively parallel multiprocessors such as the Connection Machine (CM5) using data-parallel FORTRAN and the Massachusetts Institute of Technology data-flow machine MONSOON using the implicitly parallel language Id. IntroductionDetails of the numerical implementation of a model which has been designed for the study of dynamical processes in the ocean from the convective, through the geostrophic eddy, up to global scale are set out. The "kernel" algorithm solves the incompressible Navier Stokes equations on the...
SUMMARY Exosomes are secreted by all cell types and contain proteins and nucleic acids. Here, we report that breast cancer associated exosomes contain microRNAs (miRNAs) associated with the RISC Loading Complex (RLC) and display cell-independent capacity to process precursor microRNAs (pre-miRNAs) into mature miRNAs. Pre-miRNAs, along with Dicer, AGO2, and TRBP, are present in exosomes of cancer cells. CD43 mediates the accumulation of Dicer specifically in cancer exosomes. Cancer exosomes mediate an efficient and rapid silencing of mRNAs to reprogram the target cell transcriptome. Exosomes derived from cells and sera of patients with breast cancer instigate non-tumorigenic epithelial cells to form tumors in a Dicer-dependent manner. These findings offer opportunities for the development of exosomes based biomarkers and therapies.
Abstract. Ocean models based on consistent hydrostatic, quasi-hydrostatic, and nonhydrostatic equation sets are formulated and discussed. The quasi-hydrostatic and nonhydrostatic sets are more accurate than the widely used hydrostatic primitive equations. Quasi-hydrostatic models relax the precise balance between gravity and pressure gradient forces by including in a consistent manner cosine-of-latitude Coriolis terms which are neglected in primitive equation models. Nonhydrostatic models employ the full incompressible Navier Stokes equations; they are required in the study of smallscale phenomena in the ocean which are not in hydrostatic balance. We outline a solution strategy for the Navier Stokes model on the sphere that performs efficiently across the whole range of scales in the ocean, from the convective scale to the global scale, and so leads to a model of great versatility. In the hydrostatic limit the Navier Stokes model involves no more computational effort than those models which assume strict hydrostatic balance on all scales. The strategy is illustrated in simulations of laboratory experiments in rotating convection on scales of a few centimeters, simulations of convective and baroclinic instability of the mixed layer on the 1-to 10-km scale, and simulations of the global circulation of the ocean.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.