Öz Su yapılarının planlanması ve yönetiminde nehir akım tahminleri önemli bir yere sahiptir. Lineer olmayan ve durağan olmayan karaktere sahip nehir akım verilerinin doğru tahmini zorlu bir problemdir. Son yıllarda veri tabanlı teknikler, nehir akım problemlerinde yoğun olarak kullanılmaktadır. Önerilen çalışmada popüler olarak kullanılmaya başlanan Derin Sinir Ağlarından Uzun-Kısa Süreli Bellek (Long-Short Term Memory, LSTM) Ağları ile nehir akım tahmini gerçekleştirilmiştir. Tahmin performansını artırmak üzere zaman serilerinin analizinde önemli bir yer tutan Tekil Spektrum Analizi (TSA) kullanılarak alt bant verileri elde edilmiştir. Nehir akım tahmin verisine ait TSA alt bant verilerinin LSTM ağları ile tahmini sonucu bir ileri adım tahmin çalışması gerçekleştirilmiştir. Önerilen TSA-LSTM modeli kullanılarak 0.0021 Ortalama Karesel Hata (MSE) değeri, 0.0361 Ortalama Mutlak Hata (MAE) değeri ve 0.9710 Korelasyon (R) değeri ile yüksek performanslı tahmin verisi elde edilmiştir.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.