In this work we introduce a sustainable membrane-based synthesis–separation platform for enantioselective organocatalysis. An azido derivatized cinchona-squaramide bifunctional catalyst was synthesized and subsequently grafted to the surface of a polybenzimidazole-based nanofiltration membrane. The favorable effect of the covalent graftingdue to the change in geometry and increased secondary interactionson the catalytic activity due to conformational changes was confirmed by quantum chemical calculations. Asymmetric Michael and aza-Michael reactions of 1,3-dicarbonyl and indole, pyrazole, and triazole derivatives to β-nitrostyrene were performed with as high as 99% enantiomeric excess. This report on the enantioselective aza-Michael reaction of pyrazoles and triazoles opens new frontiers in the application of squaramide-based cinchona catalysts. A catalytic membrane cascade reactor was developed for an integrated synthesis–purification process allowing at least 98% product and substrate recovery, and quantitative in situ solvent recycling. The sustainability of the synthetic methodology was assessed through E-factor and carbon footprint.
Robust, readily scalable, high-flux graphene oxide (GO) mixed matrix composite membranes were developed for organic solvent nanofiltration. Hydroxylated polybenzimidazole was synthesized by N-benzylation of polybenzimidazole with 4-(chloromethyl)benzyl alcohol, which was confirmed by FTIR and NMR spectroscopy. Flat-sheet composite membranes comprising of polybenzimidazoles and 1 or 2 wt % GO were fabricated via conventional blade coating and phase inversion. Subsequently, GO was covalently anchored to the hydroxyl groups of the polymer using a diisocyanate cross-linking agent. The even distribution of GO in the membranes was mapped by visible-light microscopy. Hydroxylation and incorporation of GO in the polymer matrix increased the permeance up to 45.2 ± 1.6 L m h bar in acetone, nearly 5 times higher than the unmodified benchmark membrane. The enhancement in permeance from the addition of GO did not compromise the solute rejection. The composite membranes were found to be tight in seven organic solvents, having molecular weight cut-offs (MWCO) as low as 140 g mol. Permeance increased with increasing solvent polarity, while rejection of a 420 g mol pharmaceutical remained over 93%. The covalent anchoring resulted in robust composite membranes that maintained constant performance over 14 days in a continuous cross-flow configuration.
In order to address the increasing demand for fresh water due to accelerated social and economic growth in the world, water treatment technologies, such as desalination, have been rapidly developed in attempts to safeguard water security. Electromembrane desalination processes, such as electrodialysis and membrane capacitive deionization, belong to a category of desalination technologies, which involve the removal of ions from ionic solutions with the use of electrically charged membranes termed ion exchange membranes. The challenges associated with ion exchange membranes have drawn the attention of many researchers, who have investigated various approaches to enhance their properties. The incorporation of nanomaterials is one of the popular approaches employed. Much research on nanomaterials incorporated ion exchange membranes was conducted for the purpose of fuel cell applications rather than electromembrane desalination. This review reports on the advances in nanomaterials incorporated ion exchange membranes applicable to desalination. The nanomaterials employed in ion exchange membranes fabrication include carbon nanotubes, graphene-based nanomaterials, silica, titanium (IV) oxide, aluminum oxide, zeolite, iron (II, III) oxide, zinc oxide, and silver. The aims of this article are to provide a snap shot of the current status of nanomaterials incorporation in ion exchange membranes, to assess the status of nanomaterials-facilitated ion exchange membranes research for electromembrane desalination, and to stimulate progress in this area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.