The paper presents the details and results of an experimental study on bolted end-plate joints of industrial type steel building frames. The investigated joints are commonly used in Lindab-Astron industrial buildings and are optimized for manufacturing, erection and durability. The aim of the research was to provide an experimental background for the design model development by studying load-bearing capacity of joints, bolt force distribution, and end-plate deformations. Because of the special joint details, (i.e., joints with four bolts in one bolt-row and HammerHead arrangements), the Eurocode 3 standardized component model had to be improved and extended. The experimental programme included six different end-plate and bolt arrangements and covered sixteen specimens. The steel grade of test specimens was S355, the bolt diameter M20, whereas the bolt grade was 8.8 and 10.9 for the two series. The end-plate thickness varied between 12 mm and 24 mm. The specimens were investigated under pure bending conditions using a four-point-bending test arrangement. In all tests the typical displacements and the bolt force distribution were measured. The end-plate plastic deformations were measured after the tests by an automatic measuring device. The measured data were presented and evaluated by the moment-bolt-row force and momentdistance from centre of compression diagrams and by the deformed end-plate surfaces. From the results the typical failure modes and the joint behaviour were specified and presented. Furthermore the influence of the end-plate thickness and the pretension of the bolts on the behaviour of bolted joints were analysed.
The paper deals with the towers of electric high voltage overhead lines. The target is a relatively simple suspension tower (tension support) made of hot rolled angles. The main aspects of structural design and the structural details are given due to the newly introduced design codes and the former Hungarian ones. The fundamental aim of the paper is to point out the changes according to the new developments. As an important design aid, a set of interactive programs developed by the authors is also shortly introduced.
The tensile strength of newly developed ultra-high strength steel grades is now above 1800 MPa, and even new steel grades are currently in development. One typical welding process to join thin steels sheets is resistance spot welding (RSW). Some standardized and not standardized formulas predict the minimal shear tension strength (STS) of RSWed joints, but those formulas are less and less accurate with the higher base materials strength. Therefore, in our current research, we investigated a significant amount of STS data of the professional literature and our own experiments and recommended a new formula to predict the STS of RSWed high strength steel joints. The proposed correlation gives a better prediction than the other formulas, not only in the ultra-high strength steel range but also in the lower steel strength domain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.