The determination of relevant rheological properties and parameters in a very broad frequency range can be achieved for a number of thermoplastic polymers, for example, polystyrene, by applying the time-temperature-superposition principle. In contrast, polyethylene can only be explored rheologically in a limited frequency range, due to its fast crystallization below the crystallization temperature and its weak viscosity temperature-dependence. In this paper, various commercially available polydisperse and narrowly distributed linear and branched polyethylenes and ethylene-vinylacetate-copolymers were characterized. A piezoelectric- and a new quartz (crystal resonator) rheometer (QR) with an extended frequency range were utilized for the characterization. Introduction of high frequency rheological techniques and implementation of these new measurement methods are shown. For the first time, the entanglement relaxation time in the higher MHz frequency range was determined by applying the QR-technique and compared with those obtained by an alternative experimental method and numerical calculations.
Until the advent of the novel Enders catalysts, the nonlinear rheological characterization of polyethylene (PE) blends, containing up to 50 wt. % of ultra-high molecular weight PE (UHMWPE, with weight average molecular weight Mw > 106 g/mol) was unattainable. In this study, by melt blending of a commercially available high-density PE (polymer matrix) and PE-reactor-blends (RBs), multimodal PE blends were prepared, and their nonlinear viscoelastic properties were investigated. The experiments revealed how extraordinarily high amount of UHMWPE content and ultra-broad molecular weight distribution characterized by well separated molecular weight modes influence the nonlinear viscoelasticity. Furthermore, in order to evaluate the strain hardening ability of the multimodal PE, an approach was proposed allowing to objectively analyze and quantify the nonlinear response of the investigated samples. Analyzing the “state diagram” of the extended specimens, which captures the melt behavior and flow instabilities during uniaxial extensional measurements, unveiled that the observed SH of multimodal PE blends, at temperatures notably higher than their melting temperature, is controlled by the stretched chains of the 2nd well separated UHMWPE molecular weight mode. Moreover, it was found that, in order to highly stretch the PE chains, a characteristic strain must be applied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.