Nanocarrier-based systems hold a promise to become “Dr. Ehrlich’s Magic Bullet” capable of delivering drugs, proteins and genetic materials intact to a specific location in an organism down to subcellular level. The key question, however, how a nanocarrier is internalized by cells and how its intracellular trafficking and the fate in the cell can be controlled remains yet to be answered. In this review we survey drug delivery systems based on various polymeric nanocarriers, their uptake mechanisms, as well as the experimental techniques and common pathway inhibitors applied for internalization studies. While energy-dependent endocytosis is observed as the main uptake pathway, the integrity of a drug-loaded nanocarrier upon its internalization appears to be a seldomly addressed problem that can drastically affect the uptake kinetics and toxicity of the system in vitro and in vivo.
Cancer is the second leading cause of death in the world and is often untreatable. Protein-based therapeutics, such as immunotherapeutics, show promising results in the fight against cancer, resulting in their market share increasing every year. Unfortunately, most protein-based therapeutics suffer from fast degradation in the blood, making effective treatment expensive, causing more off-target effects (due to the high doses necessary), and often require repeated injections to stay within the correct therapeutic range. Encapsulation of these proteins inside nanocarriers is prompted to overcome these problems by enhancing targeted drug delivery and, thus, leading to a less frequent administration and lower required dose. However, most current protein encapsulation methods show very low loading capacities (LC). This leads to even more expensive treatments and might pose a further risk for the patient caused by systemic toxicity against high concentrations of the carrier material. We investigated and optimized protein nanoprecipitation as a method to obtain a high protein LC and encapsulation efficiency (EE) inside poly(lactic-co-glycolic acid; PLGA) nanoparticles via a simple two-step process. In this work, we used model proteins to investigate the influence of various parameters such as precipitation solvent, addition speed, and protein concentration on protein activity. Our work is a critical step towards the high-loading encapsulation of immunotherapeutics.
Development of nanocarrier-based drug delivery systems is a major breakthrough in pharmacology, promising targeted delivery and reduction in drug toxicity. On the cellular level, encapsulation of a drug substantially affects the endocytic processes due to nanocarrier–membrane interaction. In this study we synthesized and characterized nanocarriers assembled from amphiphilic oligomers of N-vinyl-2-pyrrolidone with a terminal thiooctadecyl group (PVP-OD). It was found that the dissolution free energy of PVP-OD depends linearly on the molecular mass of its hydrophilic part up to M¯n = 2 × 104, leading to an exponential dependence of critical aggregation concentration (CAC) on the molar mass. A model hydrophobic compound (DiI dye) was loaded into the nanocarriers and exhibited slow release into the aqueous phase on a scale of 18 h. Cellular uptake of the loaded nanocarriers and that of free DiI were compared in vitro using glioblastoma (U87) and fibroblast (CRL2429) cells. While the uptake of both DiI/PVP-OD nanocarriers and free DiI was inhibited by dynasore, indicating a dynamin-dependent endocytic pathway as a major mechanism, a decrease in the uptake rate of free DiI was observed in the presence of wortmannin. This suggests that while macropinocytosis plays a role in the uptake of low-molecular components, this pathway might be circumvented by incorporation of DiI into nanocarriers.
Cancer is one of the leading causes of death in the world and protein therapeutics play an important role in combating this disease. Novel nanocarriers are needed for optimal delivery, enhanced therapeutic effect, and protection of proteins. Poly Lactic-co-Glycolic Acid (PLGA) nanoparticles are commonly used, since they are non-toxic, biodegradable, and allow for the sustained release of the active pharmaceutical ingredient (API). Accurate quantification of the therapeutic inside these nanocarriers is essential for further development and precise in vivo experiments, especially for determining the correct therapeutic dose. Bicinchoninic acid (BCA) assay is one of the most popular methods of protein quantification, known for its low sensitivity to common surfactants. However, large discrepancies between published results are often observed, with determined protein encapsulation efficiencies (EE) varying from 20 to 80%. We investigate the interference of excipients or the combination of excipients, on accurate EE determination of PLGA nanoparticles using the micro BCA assay. The EE was determined using multiple methods: by measuring the un-encapsulated protein (indirect approach) and directly by extracting the protein using sodium hydroxide and dimethyl sulfoxide. We show differences between the methods, highlight the most common pitfalls, and show the importance of using correct standards in assessing EE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.