Porous polyurethane foam was evaluated to replace the eight nylon meshes used as a substrate to collect nanoparticles in the Nanoparticle Respiratory Deposition (NRD) sampler. Cylindrical (25-mm diameter by 40-mm deep) foam with 110 pores per inch was housed in a 25-mm-diameter conductive polypropylene cassette cowl compatible with the NRD sampler. Pristine foam and nylon meshes were evaluated for metals content via elemental analysis. The size-selective collection efficiency of the foam was evaluated using salt (NaCl) and metal fume aerosols in independent tests. Collection efficiencies were compared to the nanoparticulate matter (NPM) criterion and a semi-empirical model for foam. Changes in collection efficiency and pressure drop of the foam and nylon meshes were measured after loading with metal fume particles as measures of substrate performance. Substantially less titanium was found in the foam (0.173 μg sampler−1) compared to the nylon mesh (125 μg sampler−1), improving the detection capabilities of the NRD sampler for titanium dioxide particles. The foam collection efficiency was similar to that of the nylon meshes and the NPM criterion (R2 = 0.98, for NaCl), although the semi-empirical model underestimated the experimental efficiency (R2 = 0.38). The pressure drop across the foam was 8% that of the nylon meshes when pristine and changed minimally with metal fume loading (~ 19 mg). In contrast, the pores of the nylon meshes clogged after loading with ~ 1 mg metal fume. These results indicate that foam is a suitable substrate to collect metal (except for cadmium) nanoparticles in the NRD sampler.
A granular bed was designed to collect nanoparticles as an alternative to nylon mesh screens for use in a nanoparticle respiratory deposition (NRD) sampler. The granular bed consisted of five layers in series: a coarse mesh, a large-bead layer, a small-bead layer, a second large-bead layer, and a second coarse mesh. The bed was designed to primarily collect particles in the small-bead layer, with the coarse mesh and large-bead layers designed to hold the collection layer in position. The collection efficiency of the granular bed was measured for varying depths of the small-bead layer and for test particles with different shape (cuboid, salt particles; and fractal, and stainless steel and welding particles). Experimental measurements of collection efficiency were compared to estimates of efficiency from theory and to the nanoparticulate matter (NPM) criterion, which was established to reflect the total deposition in the human respiratory system for particles smaller than 300 nm. The shape of the collection efficiency curve for the granular bed was similar to the NPM criterion in these experiments. The collection efficiency increased with increasing depth of the small-bead layer: the particle size associated with 50% collection efficiency, d 50 , for salt particles was 25 nm for a depth of 2.2 mm, 35 nm for 3.2 mm, and 45 nm for 4.3 mm. The best-fit to the NPM criterion was found for the bed with a small-bead layer of 3.2 mm. Compared to cubic salt particles, the collection efficiency was higher for fractal-shaped particles larger than 50 nm, presumably due to increased interception.
The nanoparticle respiratory deposition (NRD) sampler is a personal sampler that combines a cyclone, impactor, and a nylon mesh diffusion stage to measure a worker’s exposure to nanoparticles. The concentration of titanium in the nylon mesh of the diffusion stage complicates the application of the NRD sampler for assessing exposures to titanium dioxide nanoparticles. This study evaluated commercially available nonwoven textiles for use as an alternative media in the diffusion stage of the NRD sampler. Three textiles were selected as containing little titanium from an initial screening of 11 textiles by field portable x-ray fluorescence (FPXRF). Further evaluation on these three textiles was conducted to determine the concentration of titanium and other metals by inductively coupled plasma – optical emission spectroscopy (ICP-OES), the number of layers required to achieve desired collection characteristics for use as the diffusion stage in the NRD sampler (i.e., the nanoparticulate matter, NPM, criterion), and the pressure drop associated with that number of layers. Only three (two composed of cotton fibers, C1 and C2; and one of viscose bamboo and cotton fibers, BC) of 11 textiles screened had titanium concentrations below the limit of detection the XRF device (0.15 μg/cm2). Multiple metals, including small amounts of titanium, were found in each of the three nonwoven textiles using ICP-OES. The number of 25-mm-diameter layers required to achieve the collection efficiency by size required for the NRD sampler was three for C1 (R2 = 0.95 with reference to the NPM criterion), two for C2 (R2 = 0.79), and three for BC (R2 = 0.87). All measured pressure drops were less than the theoretical and even the greatest pressure drop of 65.4 Pa indicated that a typical personal sampling pump could accommodate any of the three nonwoven textiles in the NRD sampler. The titanium concentration, collection efficiency, and measured pressure drops show there is a potential for nonwoven textiles to be used as the diffusion stage of the NRD sampler.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.