In this paper we describe a variation of monotone frameworks that enables us to perform approximate typing of Python, in particular for dealing with some of its more dynamic features such as first-class functions and Python's dynamic class system. We additionally introduce a substantial number of variants of the basic analysis in order to experimentally discover which configurations attain the best balance of cost and precision. For example, the analysis allows us to be selectively flow-insensitive for certain classes of identifiers, and the amount of call-site context is configurable. Results of our evaluation include that adding call-site sensitivity and parameterized types has little effect on precision; in terms of speed call-site sensitivity is very costly. On the other hand, flow-insensitive treatment of module scope identifiers has a strongly positive effect, often both in terms of precision and speed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.