Plasma membrane endothelin type A (ET(A)) receptors are internalized and recycled to the plasma membrane, whereas endothelin type B (ET(B)) receptors undergo degradation and subsequent nuclear translocation. Recent studies show that G protein-coupled receptors (GPCRs) and ion transporters are also present and functional at the nuclear membranes of many cell types. Similarly to other GPCRs, ET(A) and ET(B) are present at both the plasma and nuclear membranes of several cardiovascular cell types, including human cardiac, vascular smooth muscle, endocardial endothelial, and vascular endothelial cells. The distribution and density of ET(A)Rs in the cytosol (including the cell membrane) and the nucleus (including the nuclear membranes) differ between these cell types. However, the localization and density of ET-1 and ET(B) receptors are similar in these cell types. The extracellular ET-1-induced increase in cytosolic ([Ca](c)) and nuclear ([Ca](n)) free Ca(2+) is associated with an increase of cytosolic and nuclear reactive oxygen species. The extracellular ET-1-induced increase of [Ca](c) and [Ca](n) as well as intracellular ET-1-induced increase of [Ca](n) are cell-type dependent. The type of ET-1 receptor mediating the extracellular ET-1-induced increase of [Ca](c) and [Ca](n) depends on the cell type. However, the cytosolic ET-1-induced increase of [Ca](n) does not depend on cell type. In conclusion, nuclear membranes' ET-1 receptors may play an important role in overall ET-1 action. These nuclear membrane ET-1 receptors could be targets for a new generation of antagonists.
The action of several peptides and drugs is thought to be primarily dependent on their interactions with specific cell surface G-protein-coupled receptors and ionic transporters such as channels and exchangers. Recent development of 3-D confocal microscopy allowed several laboratories, including ours, to identify and study the localization of receptors, channels, and exchangers at the transcellular level of several cell types. Using this technique, we demonstrated in the nuclei of several types of cells the presence of Ca(2+) channels as well as Na(+)-H(+) exchanger and receptors such as endothelin-1 and angiotensin II receptors. Stimulation of these nuclear membrane G-protein-coupled receptors induced an increase of nuclear Ca(2+). Our results suggest that, similar to the plasma membrane, nuclear membranes possess channels, exchangers and receptors such as those for endothelin-1 and angiotensin II, and that the nucleus seems to be a cell within a cell. This article will emphasize these findings.
Using immunofluorescence and 3-dimensional confocal microscopy techniques, the present study was designed to verify if NHE-1 is present at the level of the nuclear membrane in cells that are known to express this type of exchanger. Nuclei were isolated from aortic tissues of adult human, rabbit, and rats, as well as from liver tissues of human fetus, and adult rabbit and rat. In addition, cultured ventricular cardiomyocytes were isolated from 2-week-old rat. Our results showed the presence of NHE-1 in isolated nuclei of aortic vascular smooth muscle and liver of human, rabbit, and rat. NHE-1 seems to be distributed throughout the isolated nucleus and more particularly at the level of the nuclear membranes. The relative fluorescence density of NHE-1 was significantly higher (p < 0.05) in isolated liver nuclei of human, when compared with those of rabbit and rat. However, in isolated nuclei of aortic vascular smooth muscle, the relative fluorescence density of NHE-1 was significantly (p < 0.001) higher in the rabbit when compared with human and rat. In cultured rat ventricular cardiomyocytes, NHE-1 fluorescent labeling could be easily seen throughout the cell, including the nucleus, and more particularly at both the sarcolemma and the nuclear membranes. In rat cardiomyocytes, the relative fluorescence density of NHE-1 of the sarcolemma membrane, including the cytosol, was significantly lower than that of the whole nucleus (including the nuclear envelope membranes). In conclusion, our results showed that NHE-1 is present at the nuclear membranes and in the nucleoplasm and its distribution and density may depend on cell type and species used. These results suggest that nuclear membranes' NHE-1 may play a role in the modulation of intranuclear pH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.