Regulated transcription controls the diversity, developmental pathways and spatial organization of the hundreds of cell types that make up a mammal. Using single-molecule cDNA sequencing, we mapped transcription start sites (TSSs) and their usage in human and mouse primary cells, cell lines and tissues to produce a comprehensive overview of mammalian gene expression across the human body. We find that few genes are truly ‘housekeeping’, whereas many mammalian promoters are composite entities composed of several closely separated TSSs, with independent cell-type-specific expression profiles. TSSs specific to different cell types evolve at different rates, whereas promoters of broadly expressed genes are the most conserved. Promoter-based expression analysis reveals key transcription factors defining cell states and links them to binding-site motifs. The functions of identified novel transcripts can be predicted by coexpression and sample ontology enrichment analyses. The functional annotation of the mammalian genome 5 (FANTOM5) project provides comprehensive expression profiles and functional annotation of mammalian cell-type-specific transcriptomes with wide applications in biomedical research.
Although it is generally accepted that cellular differentiation requires changes to transcriptional networks, dynamic regulation of promoters and enhancers at specific sets of genes has not been previously studied en masse. Exploiting the fact that active promoters and enhancers are transcribed, we simultaneously measured their activity in 19 human and 14 mouse time courses covering a wide range of cell types and biological stimuli. Enhancer RNAs, then messenger RNAs encoding transcription factors, dominated the earliest responses. Binding sites for key lineage transcription factors were simultaneously overrepresented in enhancers and promoters active in each cellular system. Our data support a highly generalizable model in which enhancer transcription is the earliest event in successive waves of transcriptional change during cellular differentiation or activation.
A number of pathophysiologically relevant genes, including platelet-derived growth factor B-chain (PDGF-B), are induced in the vasculature after acute mechanical injury. In rat aorta, the activated expression of these genes was preceded by a marked increase in the amount of the early-growth-response gene product Egr-1 at the endothelial wound edge. Egr-1 interacts with a novel element in the proximal PDGF-B promoter, as well as with consensus elements in the promoters of other genes induced by endothelial injury. This interaction is crucial for injury-induced PDGF-B promoter-dependent expression. Sp1, whose binding site in the PDGF-B promoter overlaps that of Egr-1, occupies this element in unstimulated cells and is displaced by increasing amounts of Egr-1. These findings implicate Egr-1 in the up-regulated expression of PDGF-B and other potent mediators in mechanically injured arterial endothelial cells.
Current understanding of key transcription factors regulating angiogenesis is limited. Here we show that RNA-cleaving phosphodiester-linked DNA-based enzymes (DNAzymes), targeting a specific motif in the 5' untranslated region of early growth response (Egr-1) mRNA, inhibit Egr-1 protein expression, microvascular endothelial cell replication and migration, and microtubule network formation on basement membrane matrices. Egr-1 DNAzymes blocked angiogenesis in subcutaneous Matrigel plugs in mice, an observation that was independently confirmed by plug analysis in Egr-1-deficient animals, and inhibited MCF-7 human breast carcinoma growth in nude mice. Egr-1 DNAzymes suppressed tumor growth without influencing body weight, wound healing, blood coagulation or other hematological parameters. These agents inhibited endothelial expression of fibroblast growth factor (FGF)-2, a proangiogenic factor downstream of Egr-1, but not that of vascular endothelial growth factor (VEGF). Egr-1 DNAzymes also repressed neovascularization of rat cornea. Thus, microvascular endothelial cell growth, neovascularization, tumor angiogenesis and tumor growth are processes that are critically dependent on Egr-1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.