Mean field games (MFG) and mean field control (MFC) are critical classes of multi-agent models for efficient analysis of massive populations of interacting agents. Their areas of application span topics in economics, finance, game theory, industrial engineering, crowd motion, and more. In this paper, we provide a flexible machine learning framework for the numerical solution of potential MFG and MFC models. Stateof-the-art numerical methods for solving such problems utilize spatial discretization that leads to a curse-of-dimensionality. We approximately solve high-dimensional problems by combining Lagrangian and Eulerian viewpoints and leveraging recent advances from machine learning. More precisely, we work with a Lagrangian formulation of the problem and enforce the underlying Hamilton-Jacobi-Bellman (HJB) equation that is derived from the Eulerian formulation. Finally, a tailored neural network parameterization of the MFG/MFC solution helps us avoid any spatial discretization. Our numerical results include the approximate solution of 100-dimensional instances of optimal transport and crowd motion problems on a standard work station and a validation using a Eulerian solver in two dimensions. These results open the door to much-anticipated applications of MFG and MFC models that were beyond reach with existing numerical methods.
A standard assumption in mean-field game (MFG) theory is that the coupling between the Hamilton-Jacobi equation and the transport equation is monotonically non-decreasing in the density of the population. In many cases, this assumption implies the existence and uniqueness of solutions. Here, we drop that assumption and construct explicit solutions for one-dimensional MFGs. These solutions exhibit phenomena not present in monotonically increasing MFGs: lowregularity, non-uniqueness, and the formation of regions with no agents.
In this note, we develop Fourier approximation methods for the solutions of first-order nonlocal mean-field games (MFG) systems. Using Fourier expansion techniques, we approximate a given MFG system by a simpler one that is equivalent to a convex optimization problem over a finite-dimensional subspace of continuous curves. Furthermore, we perform a time-discretization for this optimization problem and arrive at a finite-dimensional saddle point problem. Finally, we solve this saddle-point problem by a variant of a primal dual hybrid gradient method.
Parameter identification determines the essential system parameters required to build real-world dynamical systems by fusing crucial physical relationships and experimental data. However, the data-driven approach faces main difficulties, such as a lack of observational data, discontinuous or inconsistent time trajectories, and noisy measurements. The ill-posedness of the inverse problem comes from the chaotic divergence of the forward dynamics. Motivated by the challenges, we shift from the Lagrangian particle perspective to the state space flow field's Eulerian description. Instead of using pure time trajectories as the inference data, we treat statistics accumulated from the Direct Numerical Simulation (DNS) as the observable, whose continuous analog is the steady-state probability density function (PDF) of the corresponding Fokker-Planck equation (FPE). We reformulate the original parameter identification problem as a data-fitting, PDE-constrained optimization problem. An upwind scheme based on the finite-volume method that enforces mass conservation and positivity preserving is used to discretize the forward problem. We present theoretical regularity analysis for evaluating gradients of optimal transport costs and introduce three different formulations for efficient gradient calculation. Numerical results using the quadratic Wasserstein metric from optimal transport demonstrate this novel approach's robustness for chaotic dynamical system parameter identification.
Abstract-Here, we consider one-dimensional firstorder stationary mean-field games with congestion. These games arise when crowds face difficulty moving in highdensity regions. We look at both monotone decreasing and increasing interactions and construct explicit solutions using the current formulation. We observe new phenomena such as discontinuities, unhappiness traps and the nonexistence of solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.