Crossflow microfiltration of plasma from blood through microsieves in a microchannel is potentially useful in many biomedical applications, including clinically as a wearable water removal device under development by the authors. We report experiments that correlate filtration rates, transmembrane pressures (TMP) and shear rates during filtration through a microscopically high channel bounded by a low intrinsic resistance photolithographically-produced porous semiconductor membrane. These experiments allowed observation of erythrocyte behavior at the filtering surface and showed how their unique deformability properties dominated filtration resistance. At low filtration rates (corresponding to low TMP), they rolled along the filter surface, but at higher filtration rates (corresponding to higher TMP), they anchored themselves to the filter membrane, forming a self-assembled, incomplete monolayer. The incompleteness of the layer was an essential feature of the monolayer's ability to support sustainable filtration. Maximum steady-state filtration flux was a function of wall shear rate, as predicted by conventional crossflow filtration theory, but, contrary to theories based on convective diffusion, showed weak dependence of filtration on erythrocyte concentration. Post-filtration scanning electron micrographs revealed significant capture and deformation of erythrocytes in all filter pores in the range 0.25 to 2 μm diameter. We report filtration rates through these filters and describe a largely unrecognized mechanism that allows stable filtration in the presence of substantial cell layers.
Cross-flow filtration of fine suspensions through microsieves occurs in microprocessing. The interaction of particles with surfaces in microenvironments has been extensively studied, but predominantly in monolayers and not with an eye to microfiltration. Here, we introduce a microfiltration model that pertains to particles that might be seen as fine in a macroscopic environment, but are large enough to intrude significantly into the shear layer of a microchannel. Thus, particle accumulation upon the sieve couples the steady-state filtrate flux and the suspension flow through the microchannel that feeds the sieve. We envision and create a stable, stationary multilayer of particles whose thickness is shear-limited and we identify and verify the structure and parameters that limit steady filtration in this environment. At first, a packed bed of particles forms, growing into and regulated by the micro channel's shear flow. A critical shear stress is shown to determine the thickness of the bed, seen as a stationary and stable multilayer of particles through which filtration may occur. As the bed thickens, at the expense of channel area for suspension flow, surface shear stress increases until no further particle adherence is possible. We built a simple example using hard noninteracting polymer microspheres and conducted cross-flow filtration experiments over Aquamarijn™ microsieves (uniform pore size of 0.8 μm). We observed a steady cake-layer thickness and because of the simple geometry afforded by uniform spheres, we could approximate the force balance, cake resistance, and filtration rate from first principles. The good fit of our data to the proposed mechanism lays a firm basis for the semiquantitative analysis of the behavior of more complex suspensions.Critical shear stress at each filtration rate (Q f ) was plotted to demonstrate a monotonically increasing trend, aligned with our theoretical prediction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.