In this text, students of applied mathematics, science and engineering are introduced to fundamental ways of thinking about the broad context of parallelism. The authors begin by giving the reader a deeper understanding of the issues through a general examination of timing, data dependencies, and communication. These ideas are implemented with respect to shared memory, parallel and vector processing, and distributed memory cluster computing. Threads, OpenMP, and MPI are covered, along with code examples in Fortran, C, and Java. The principles of parallel computation are applied throughout as the authors cover traditional topics in a first course in scientific computing. Building on the fundamentals of floating point representation and numerical error, a thorough treatment of numerical linear algebra and eigenvector/eigenvalue problems is provided. By studying how these algorithms parallelize, the reader is able to explore parallelism inherent in other computations, such as Monte Carlo methods.
-Finite element approximations of the stationary power-law Stokes problem using penalty formulation are considered. A priori error estimates under appropriate smoothness assumptions on the solutions are established without assuming a discrete version of the BB condition. Numerical solutions are presented by implementing a nonlinear conjugate gradient method.
Abstract. Galerkin approximations to solutions of a Cauchy-Dirichlet problem governed by the generalized porous medium equationon bounded convex domains are considered. The range of the parameter ρ includes the fast diffusion case 1 < ρ < 2. Using an Euler finite difference approximation in time, the semi-discrete solution is shown to converge to the exact solution in L ∞ (0, T ; L ρ (Ω)) norm with an error controlled by O(∆t
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.