Traditional storage media have been gradually unable to meet the needs of data storage around the world, and one solution to this problem is DNA storage. However, it is easy to make errors in the subsequent sequencing reading process of DNA storage coding. To reduces error rates, a method to enhance the robustness of the DNA storage coding set is proposed. Firstly, to reduce the likelihood of secondary structure in DNA coding sets, a repeat tandem sequence constraint is proposed. An improved DTW distance constraint is proposed to address the issue that the traditional distance constraint cannot accurately evaluate non-specific hybridization between DNA sequences. Secondly, an algorithm that combines random opposition-based learning and eddy jump strategy with Aquila Optimizer (AO) is proposed in this paper, which is called ROEAO. Finally, the ROEAO algorithm is used to construct the coding sets with traditional constraints and enhanced constraints, respectively. The quality of the two coding sets is evaluated by the test of the number of issuing card structures and the temperature stability of melting; the data show that the coding set constructed with ROEAO under enhanced constraints can obtain a larger lower bound while improving the coding quality.
To overcome the lack of flexibility of Harris Hawks Optimization (HHO) in switching between exploration and exploitation, and the low efficiency of its exploitation phase, an efficient improved greedy Harris Hawks Optimizer (IGHHO) is proposed and applied to the feature selection (FS) problem. IGHHO uses a new transformation strategy that enables flexible switching between search and development, enabling it to jump out of local optima. We replace the original HHO exploitation process with improved differential perturbation and a greedy strategy to improve its global search capability. We tested it in experiments against seven algorithms using single-peaked, multi-peaked, hybrid, and composite CEC2017 benchmark functions, and IGHHO outperformed them on optimization problems with different feature functions. We propose new objective functions for the problem of data imbalance in FS and apply IGHHO to it. IGHHO outperformed comparison algorithms in terms of classification accuracy and feature subset length. The results show that IGHHO applies not only to global optimization of different feature functions but also to practical optimization problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.