Abstract. Dissimilatory iron reduction is probably one of the oldest types of metabolisms that still participates in important biogeochemical cycles, such as those of carbon and sulfur. It is one of the more energetically favorable anaerobic microbial respiration processes and is usually coupled to the oxidation of organic matter. Traditionally this process is thought to be limited to the shallow part of the sedimentary column in most aquatic systems. However, iron reduction has also been observed in the methanic zone of many marine and freshwater sediments, well below its expected zone and occasionally accompanied by decreases in methane, suggesting a link between the iron and the methane cycles. Nevertheless, the mechanistic nature of this link (competition, redox or other) has yet to be established and has not been studied in oligotrophic shallow marine sediments. In this study we present combined geochemical and molecular evidences for microbial iron reduction in the methanic zone of the oligotrophic southeastern (SE) Mediterranean continental shelf. Geochemical porewater profiles indicate iron reduction in two zones, the uppermost part of the sediment, and the deeper zone, in the layer of high methane concentration. Results from a slurry incubation experiment indicate that the deep methanic iron reduction is microbially mediated. The sedimentary profiles of microbial abundance and quantitative PCR (qPCR) of the mcrA gene, together with Spearman correlation between the microbial data and Fe(II) concentrations in the porewater, suggest types of potential microorganisms that may be involved in the iron reduction via several potential pathways: H2 or organic matter oxidation, an active sulfur cycle, or iron-driven anaerobic oxidation of methane. We suggest that significant upward migration of methane in the sedimentary column and its oxidation by sulfate may fuel the microbial activity in the sulfate methane transition zone (SMTZ). The biomass created by this microbial activity can be used by the iron reducers below, in the methanic zone of the sediments of the SE Mediterranean.
Anaerobic oxidation of methane (AOM) plays a crucial role in controlling global methane emission. This is a microbial process that relies on the reduction of external electron acceptors such as sulfate, nitrate/nitrite, and transient metal ions. In marine settings, the dominant electron acceptor for AOM is sulfate, while other known electron acceptors are transient metal ions such as iron and manganese oxides. Despite the AOM process coupled with sulfate reduction being relatively well characterized, researches on metal-dependent AOM process are few, and no microorganism has to date been identified as being responsible for this reaction in natural marine environments. In this review, geochemical evidences of metal-dependent AOM from sediment cores in various marine environments are summarized. Studies have showed that iron and manganese are reduced in accordance with methane oxidation in seeps or diffusive profiles below the methanogenesis zone. The potential biochemical basis and mechanisms for metal-dependent AOM processes are here presented and discussed. Future research will shed light on the microbes involved in this process and also on the molecular basis of the electron transfer between these microbes and metals in natural marine environments.
Bathyarchaeia, as one of the most abundant microorganisms on Earth, play vital roles in the global carbon cycle. However, our understanding of their origin, evolution, and ecological functions remains poorly constrained. Here, we present the largest dataset of Bathyarchaeia metagenome assembled genome to date and reclassify Bathyarchaeia into eight order-level units corresponding to the former subgroup system. Highly diversified and versatile carbon metabolisms were found among different orders, particularly atypical C1 metabolic pathways, indicating that Bathyarchaeia represent overlooked important methylotrophs. Molecular dating results indicate that Bathyarchaeia diverged at ~3.3 billion years, followed by three major diversifications at ~3.0, ~2.5, and ~1.8 to 1.7 billion years, likely driven by continental emergence, growth, and intensive submarine volcanism, respectively. The lignin-degrading Bathyarchaeia clade emerged at ~300 million years perhaps contributed to the sharply decreased carbon sequestration rate during the Late Carboniferous period. The evolutionary history of Bathyarchaeia potentially has been shaped by geological forces, which, in turn, affected Earth’s surface environment.
Bathyarchaeia, as one of the most abundant microorganisms on Earth, play vital roles in the global carbon cycle. However, our understanding of their origin, evolution and ecological functions remains poorly constrained. Based on the phylogeny of the present largest dataset of Bathyarchaeia metagenome assembled genome (MAG), we reclassified Bathyarchaeia into eight order-level units and corresponded to the former subgroup system. Highly diversified and versatile carbon metabolisms were discovered among different orders, particularly atypical C1 metabolic pathways, indicating that Bathyarchaeia represent overlooked important methylotrophs. Molecular dating results indicate that Bathyarchaeia diverged at ~3.3 Ga, followed by three major diversifications at ~3.0 Ga, ~2.5 Ga and ~1.8-1.7 Ga, likely driven by continental emergence, growth and intensive submarine volcanism, respectively. The lignin-degrading Bathyarchaeia clade emerged at ~300 Ma and perhaps contributed to the sharply decreased carbon sequestration rate during the Late Carboniferous period. The evolutionary pathway of Bathyarchaeia potentially have been shaped by geological forces, which in turn impacted the Earth's surface environment.
<p><strong>Abstract.</strong> Dissimilatory iron reduction is probably one of the earliest metabolisms, which still participates in important biogeochemical cycles such as carbon and sulfur. Traditionally, this process is thought to be limited to the shallow part of the sediment column, as one of the energetically favorable anaerobic microbial respiration cascade, usually coupled to the oxidation of organic matter. However, in the last decade iron reduction has been observed in the methanogenic depth in many aquatic sediments, suggesting a link between the iron and the methane cycles. Yet, the mechanistic nature of this link has yet to be established, and has not been studied in oligotrophic shallow marine sediments. In this study we present first geochemical and molecular evidences for microbial iron reduction in the methanogenic depth of the oligotrophic Southern Eastern (SE) Mediterranean continental shelf. Geochemical pore-water profiles indicate iron reduction in two zones, the traditional zone in the upper part of the sediment cores and a deeper second zone located in the enhanced methane concentration layer. Results from a slurry incubation experiment indicate that the iron reduction is microbial. The Geochemical data, Spearman correlation between microbial abundance and iron concentration, as well as the qPCR analysis of the mcrA gene point to several potential microorganisms that could be involved in this iron reduction via three potential pathways: H<sub>2</sub>/organic matter oxidation, an active sulfur cycle or iron driven anaerobic oxidation of methane.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.