IntroductionHepatitis C virus (HCV) is the second largest contributor to liver disease in the UK, with injecting drug use as the main risk factor among the estimated 200 000 people currently infected. Despite effective prevention interventions, chronic HCV prevalence remains around 40% among people who inject drugs (PWID). New direct-acting antiviral (DAA) HCV therapies combine high cure rates (>90%) and short treatment duration (8 to 12 weeks). Theoretical mathematical modelling evidence suggests HCV treatment scale-up can prevent transmission and substantially reduce HCV prevalence/incidence among PWID. Our primary aim is to generate empirical evidence on the effectiveness of HCV ‘Treatment as Prevention’ (TasP) in PWID.Methods and analysisWe plan to establish a natural experiment with Tayside, Scotland, as a single intervention site where HCV care pathways are being expanded (including specialist drug treatment clinics, needle and syringe programmes (NSPs), pharmacies and prison) and HCV treatment for PWID is being rapidly scaled-up. Other sites in Scotland and England will act as potential controls. Over 2 years from 2017/2018, at least 500 PWID will be treated in Tayside, which simulation studies project will reduce chronic HCV prevalence among PWID by 62% (from 26% to 10%) and HCV incidence will fall by approximately 2/3 (from 4.2 per 100 person-years (p100py) to 1.4 p100py). Treatment response and re-infection rates will be monitored. We will conduct focus groups and interviews with service providers and patients that accept and decline treatment to identify barriers and facilitators in implementing TasP. We will conduct longitudinal interviews with up to 40 PWID to assess whether successful HCV treatment alters their perspectives on and engagement with drug treatment and recovery. Trained peer researchers will be involved in data collection and dissemination. The primary outcome – chronic HCV prevalence in PWID – is measured using information from the Needle Exchange Surveillance Initiative survey in Scotland and the Unlinked Anonymous Monitoring Programme in England, conducted at least four times before and three times during and after the intervention. We will adapt Bayesian synthetic control methods (specifically the Causal Impact Method) to generate the cumulative impact of the intervention on chronic HCV prevalence and incidence. We will use a dynamic HCV transmission and economic model to evaluate the cost-effectiveness of the HCV TasP intervention, and to estimate the contribution of the scale-up in HCV treatment to observe changes in HCV prevalence. Through the qualitative data we will systematically explore key mechanisms of TasP real world implementation from provider and patient perspectives to develop a manual for scaling up HCV treatment in other settings. We will compare qualitative accounts of drug treatment and recovery with a ‘virtual cohort’ of PWID linking information on HCV treatment with Scottish Drug treatment databases to test whether DAA treatment improves drug treatment outcomes.Ethics and disseminationExtending HCV community care pathways is covered by ethics (ERADICATE C,ISRCTN27564683, Super DOT C Trial clinicaltrials.gov:NCT02706223). Ethical approval for extra data collection from patients including health utilities and qualitative interviews has been granted (REC ref: 18/ES/0128) and ISCRCTN registration has been completed (ISRCTN72038467). Our findings will have direct National Health Service and patient relevance; informing prioritisation given to early HCV treatment for PWID. We will present findings to practitioners and policymakers, and support design of an evaluation of HCV TasP in England.
The outer membrane beta-barrel trans-membrane proteins in gram-negative bacteria are folded into the membrane with the aid of polypeptide transport-associated (POTRA) domains. These domains occur, and probably function, as a tandem array situated on the periplasmic side of the outer membrane. Two crystal structures and one NMR study have attempted to define the structure and articulation of the POTRA domains of the Escherichia coli, prototypic Omp85 protein BamA. We have used pulsed electron paramagnetic resonance (EPR) to determine the distance and distance distribution between (1-Oxyl-2,2,5,5-tetramethylpyrroline-3-methyl) methanethiosulfonate spin labels (MTSSL), placed across the domain interface of the first two POTRA domains of BamA. Our results show tightly defined interdomain distance distributions that indicate a well-defined domain orientation. Examination of the known structures revealed that none of them fitted the EPR data. A combination of EPR and NMR data was used to generate converged structures with defined domain-domain orientation.
The abuse of heroin (diamorphine) and heroin-related deaths are increasing around the world. The interpretation of the toxicological results from suspected heroin-related deaths is notoriously difficult, especially in cases where there may be limited samples. To help forensic practitioners with heroin interpretation, we determined the concentration of morphine (M), morphine-3-glucuronide (M3G), and morphine-6-glucuronide (M6G) in blood (femoral and cardiac), brain (thalamus), liver (deep right lobe), bone marrow (sternum), skeletal muscle (psoas), and vitreous humor in 44 heroin-related deaths. The presence of 6-monoacetylmorphine (6-MAM) in any of the postmortem samples was used as confirmation of heroin use. Quantitation was carried out using a validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) method with solid-phase extraction. We also determined the presence of papaverine, noscapine and codeine in the samples, substances often found in illicit heroin and that may help determine illicit heroin use. The results of this study show that vitreous is the best sample to detect 6-MAM (100% of cases), and thus heroin use. The results of the M, M3G, and M6G quantitation in this study allow a degree of interpretation when samples are limited. However in some cases it may not be possible to determine heroin/morphine use as in four cases in muscle (three cases in bone marrow) no morphine, M3G, or M6G were detected, even though they were detected in other case samples. As always, postmortem cases of suspected morphine/heroin intoxication should be interpreted with care and with as much case knowledge as possible.
IntroductionHepatitis C is a blood-borne virus (HCV) that can seriously damage the liver and is spread mainly through blood-to-blood contact with an infected person. Over 85% of individuals who have HCV in Scotland became infected following injecting drug use. Since people who inject drugs (PWID) are the main source of new infections, theoretical modelling has suggested that treatment of HCV infection in PWID may effectively reduce HCV prevalence and accomplish elimination. This protocol describes a clinical trial delivering HCV treatment within injecting equipment provision sites (IEPS) in Tayside, Scotland.Methods and analysisPWID attending IEPS are tested for HCV and, if they are chronically infected with HCV and eligible, invited to receive treatment within the IEPS. They are randomised to one of three treatment regimens; daily observed treatment, treatment dispensed every 2 weeks and treatment dispensed every 2 weeks together with an adherence psychological intervention (administered before treatment begins). The primary outcome is comparison of the rate of successful treatment (SVR12) in each treatment group. Secondary analyses include assessment of adherence, reinfection rates, viral resistance to treatment and interaction of the treatment with illicit drugs.Ethics and disseminationThe ADVANCE (A Direct obserVed therApy versus fortNightly CollEction) HCV trial was given favourable opinion by East of Scotland Research Ethics Committee (LR/17/ES/0089) prior to commencement.Trial registration numbersEuropean Clinical Trials Database (EudraCT) (2017-001039-38) and ClinicalTrials.gov (NCT03236506).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.