Anti-epidermal growth factor receptor (EGFR) therapies have been proven clinically effective for a variety of epithelial tumours. Vaccination of mice with the extracellular domain (ECD) of autologous EGFR overcomes the tolerance to self-EGFR and has antimetastatic effect on EGFR+ tumour. Because EGF/EGFR-signalling plays an important role in the inflammation stage of wound healing, the main objective of this study was to explore the possible role of murine (m) EGFR-ECD vaccine in the croton-oil-induced ear oedema and wound healing process in mice as autologous experimental models, mimicking the possible post-surgical wound complication in patients treated with human EGFR-ECD/VSSP vaccine. Mice were intramuscularly immunised four times; biweekly with the mEGFR-ECD/VSSP/Mont. Seven days later, an 8 mm diameter, full-thickness skin wound was created on the back of each animal. Immunisation induced a strong specific humoral response against the mEGFR-ECD protein and a DTH dose-response curve but interestingly, animals treated with mEGFR-ECD/VSSP/Mont had similar inflammatory and healing speed responses compared to control ones. These data suggest that application of mEGFR-ECD/VSSP vaccine as a therapeutic approach in cancer patients could not elicit a poor healing process after surgery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.