Summary
The development of new vaccines and antibody therapeutics typically takes several years and requires over $1bn in investment. Accurate knowledge of the paratope (antibody binding site) can speed up and reduce the cost of this process by improving our understanding of antibody-antigen binding. We present Paragraph, a structure-based paratope prediction tool that outperforms current state-of-the-art tools using simpler feature vectors and no antigen information.
Availability
Source code is freely available at www.github.com/oxpig/Paragraph
Supplementary information
Supplementary data are available at Bioinformatics online.
Antibody-antigen binding affinity lies at the heart of therapeutic antibody development: efficacy is guided by specific binding and control of affinity. Here we present Graphinity, an equivariant graph neural network architecture built directly from antibody-antigen structures that achieves state-of-the-art performance on experimental ΔΔG prediction. However, our model, like previous methods, appears to be overtraining on the few hundred experimental data points available. To test if we could overcome this problem, we built a synthetic dataset of nearly 1 million FoldX-generated ΔΔG values. Graphinity achieved Pearson's correlations nearing 0.9 and was robust to train-test cutoffs and noise on this dataset. The synthetic dataset also allowed us to investigate the role of dataset size and diversity in model performance. Our results indicate there is currently insufficient experimental data to accurately and robustly predict ΔΔG, with orders of magnitude more likely needed. Dataset size is not the only consideration – our tests demonstrate the importance of diversity. We also confirm that Graphinity can be used for experimental binding prediction by applying it to a dataset of >36,000 Trastuzumab variants.
The development of new vaccines and antibody therapeutics typically takes several years and requires over $1bn in investment. Accurate knowledge of the paratope (antibody binding site) can speed up and reduce the cost of this process by improving our understanding of antibody-antigen binding. We present Paragraph, a structure-based paratope prediction tool that outperforms current state-of-the-art tools using simpler feature vectors and no antigen information.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.