Cyclin D1 is a proto-oncogene that is overexpressed in many cancers including breast and prostate. It plays a role in cell proliferation through activation of cyclin-dependent kinases. Curcumin, a diferuloylmethane, is a chemopreventive agent known to inhibit the proliferation of several breast and prostate cancer cell lines. It is possible that the effect of curcumin is mediated through the regulation of cyclin D1. In the present report we show that inhibition of the proliferation of various prostate, breast and squamous cell carcinoma cell lines by curcumin correlated with the down-regulation of the expression of cyclin D1 protein. In comparison, the down-regulation by curcumin of cyclin D2 and cyclin D3 was found only in selective cell lines. The suppression of cyclin D1 by curcumin led to inhibition of CDK4-mediated phosphorylation of retinoblastoma protein. We found that curcumin-induced down-regulation of cyclin D1 was inhibited by lactacystin, an inhibitor of 26S proteosome, suggesting that curcumin represses cyclin D1 expression by promoting proteolysis. We found that curcumin also down-regulated mRNA expression, thus suggesting transcriptional regulation. Curcumin also inhibited the activity of the cyclin D1 promoter-dependent reporter gene expression. Overall our results suggest that curcumin down-regulates cyclin D1 expression through activation of both transcriptional and post-transcriptional mechanisms, and this may contribute to the antiproliferative effects of curcumin against various cell types.
The Rho family of small GTPases, including Rho, Rac, and Cdc42, play essential roles in diverse cellular functions. The ability of Rho family GTPases to participate in signaling events is determined by the ratio of inactive (GDP-bound) and active (GTP-bound) forms in the cell. The activation of Rho family proteins requires the exchange of bound GDP for GTP, a process catalyzed by the Dbl family of guanine nucleotide exchange factors (GEFs). The GEFs have high affinity for the guanine nucleotide-free state of the GTPases and are thought to promote GDP release by stabilizing an intermediate transition state. In this study, we have identified and characterized a new Rac/Cdc42-specific Dbl family guanine nucleotide exchange factor, named GEFT. GEFT is highly expressed in the excitable tissues, including brain, heart, and muscle. Low or very little expression was detected in other nonexcitable tissues. GEFT has specific exchange activity for Rac and Cdc42 in our in vitro GTPase exchange assays and glutathione S-transferase-PAK pull-down assays with GTP-bound Rac1 and Cdc42. Overexpression of GEFT leads to changes in cell morphology and actin cytoskeleton re-organization, including the formation of membrane microspikes, filopodia, and lamilliopodia. Furthermore, expression of GEFT in NIH3T3 cells promotes foci formation, cell proliferation, and cell migration, possibly through the activation of transcriptional factors involved in cell growth and proliferation. Together, our data suggest that GEFT is a Rac/Cdc42-specific GEF protein that regulates cell morphology, cell proliferation, and transformation.
G proteins are molecular switches that control a wide variety of physiological functions, including neurotransmission, transcriptional activation, cell migration, cell growth. and proliferation. The ability of GTPases to participate in signaling events is determined by the ratio of GTP-bound to GDP-bound forms in the cell. All known GTPases exist in an inactive (GDP-bound) and an active (GTP-bound) conformation, which are catalyzed by guanine nucleotide exchange factors and GTPase-activating proteins (GAPs), respectively. In this study, we identified and characterized a new family of bifunctional GTP-binding and GTPase-activating proteins, named GGAP. GGAPs contain an N-terminal Ras homology domain, called the G domain, followed by a pleckstrin homology (PH) domain, a C-terminal GAP domain, and a tandem ankyrin (ANK) repeat domain. Expression analysis indicates that this new family of proteins has distinct cell localization, tissue distribution, and even message sizes. GTPase assays demonstrate that GGAPs have high GTPase activity through direct intramolecular interaction of the N-terminal G domain and the C-terminal GAP domain. In the absence of the GAP domain, the N-terminal G domain has very low activity, suggesting a new model of GGAP protein regulation via intramolecular interaction like the multidomain protein kinases. Overexpression of GGAPs leads to changes in cell morphology and activation of gene transcription.
The Rho family of small GTPases controls a wide range of cellular processes in eukaryotic cells, such as normal cell growth, proliferation, differentiation, gene regulation, actin cytoskeletal organization, cell fate determination, and neurite outgrowth. The activation of RhoGTPases requires the exchange of GDP for GTP, a process catalyzed by the Dbl family of guanine nucleotide exchange factors. We demonstrate that a newly identified guanine nucleotide exchange factor, GEFT, is widely expressed in the brain and highly concentrated in the hippocampus, and the Purkinje and granular cells of the cerebellum. Exogenous expression of GEFT promotes dendrite outgrowth in hippocampal neurons, resulting in spines with larger size as compared with control spines. In neuroblastoma cells, GEFT promotes the active GTPbound state of Rac1, Cdc42, and RhoA and increases neurite outgrowth primarily via Rac1. Furthermore, we demonstrated that PAK1 and PAK5, both downstream effectors of Rac1/Cdc42, are necessary for GEFT-induced neurite outgrowth. AP-1 and NF-B, two transcriptional factors involved in neurite outgrowth and survival, were up-regulated in GEFT-expressing cells. Together, our data suggest that GEFT enhances dendritic spine formation and neurite outgrowth in primary neurons and neuroblastoma cells, respectively, through the activation of Rac/Cdc42-PAK signaling pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.