Tranilast (N-(3 0 4 0 -demethoxycinnamoyl)-anthranilic acid (N-5)) is an investigational drug for the prevention of restenosis following percutaneous transluminal coronary revascularization. An increase in bilirubin levels was observed in 12% of patients upon administration of tranilast in a phase III clinical trial. To identify the potential genetic factors that may account for the drug-induced hyperbilirubinemia, we examined polymorphisms in the uridine diphosphate glucuronosyltransferase 1A1 (UGT1A1) gene in over a thousand patients. Our results suggested that the TA repeat polymorphism in UGT1A1, which predisposes some individuals to Gilbert's syndrome, predicted the susceptibility to tranilast-induced hyperbilirubinemia. The (TA) 7 /(TA) 7 genotype was present in 39% of the 127 hyperbilirubinemic patients vs 7% of the 909 controls (P ¼ 2 Â 10 À22 ). Rapid identification of genetic factors accounting for the observed adverse effect during the course of a double-blind clinical trial demonstrated the potential application of pharmacogenetics in the clinical development of safe and effective medicines.
A practical limitation to the identification of genetic profiles predictive of drug-induced adverse events is the number of patients with the adverse event that can be tolerated before the drug is withdrawn. Whole genome screening for regions of linkage disequilibrium (LD) associated with a particular phenotype may provide the mechanism to rapidly discover specific and sensitive profiles. We have used data from a large phase III clinical trial of tranilast and typed 76 SNPs over a 2.7 megabase region flanking the uridine diphosphate glucuronosyltranserferase 1A1 gene. Three SNPs within one LD block showed strong association with tranilast-induced hyperbilirubinemia (Po10 À13 ). Our data illustrated that a genome-wide LD scan of 100 000-200 000 SNPs is sufficient to identify a pharmacogenetic association with a drug-induced adverse event.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.