We introduce a new approach to Monge-Ampère geometry based on techniques from higher symplectic geometry. Our work is motivated by the application of Monge-Ampère geometry to the Poisson equation for the pressure that arises for incompressible Navier-Stokes flows. Whilst this equation constitutes an elliptic problem for the pressure, it can also be viewed as a non-linear partial differential equation connecting the pressure, the vorticity, and the rate-of-strain. As such, it is a key diagnostic relation in the quest to understand the formation of vortices in turbulent flows. We study this equation via the (higher) Lagrangian submanifold it defines in the cotangent bundle to the configuration space of the fluid. Using our definition of a (higher) Monge-Ampère structure, we study an associated metric on the cotangent bundle together with its pull-back to the (higher) Lagrangian submanifold. The signatures of these metrics are dictated by the relationship between vorticity and rate-of-strain, and their scalar curvatures can be interpreted in a physical context in terms of the accumulation of vorticity, strain, and their gradients. We show explicity, in the case of two-dimensional flows, how topological information can be derived from the Monge-Ampère geometry of the Lagrangian submanifold. We also demonstrate how certain solutions to the three-dimensional incompressible Navier-Stokes equations, such as Hill's spherical vortex and an integrable case of Arnol'd-Beltrami-Childress flow, have symmetries that facilitate a formulation of these solutions from the perspective of (higher) symplectic reduction.
We present key initial results in the study of global timelike curvature bounds within the Lorentzian pre-length space framework. Most notably, we construct a Lorentzian analogue to Alexandrov's Patchwork, thus proving that suitably nice Lorentzian pre-length spaces with local upper timelike curvature bound also satisfy a corresponding global upper bound. Additionally, for spaces with global lower bound on their timelike curvature, we provide a Bonnet-Myers style result, constraining their finite diameter. Throughout, we make the natural comparisons to the metric case, concluding with a discussion of potential applications and ongoing work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.