A semisimple monoid M is called quasismooth if M \ {0} has sufficiently mild singularities. We define a cellular decomposition of such monoids using the method of one-parameter subgroups. These cells turn out to be "almost" affine spaces. But they can also be described in terms of the idempotents and B × B-orbits of M. This leads to a number of combinatorial results about the inverse monoid of B × B-orbits of M. In particular, we obtain fundamental information about the H -polynomial of M.
In this paper we explicitly determine the Renner monoid ℛ and the cross section lattice Λ of the symplectic algebraic monoid MSpn in terms of the Weyl group and the concept of admissible sets; it turns out that ℛ is a submonoid of ℛn, the Renner monoid of the whole matrix monoid Mn, and that Λ is a sublattice of Λn, the cross section lattice of Mn. Cell decompositions in algebraic geometry are usually obtained by the method of [1]. We give a more direct definition of cells for MSpn in terms of the B × B-orbits, where B is a Borel subgroup of the unit group G of MSpn. Each cell turns out to be the intersection of MSpn with a cell of Mn. We also show how to obtain these cells using a carefully chosen one parameter subgroup.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.