We developed an adaptive algorithm to reduce rice loss in harvesting, promote threshing and improve the quality and efficiency of small- and medium-sized rice harvesters operating in southern China’s hilly and mountainous areas. Using a fuzzy PID control algorithm, the harvester adapts to the rice harvesting conditions in southern China, and monitors rice feed volume changes and instantly adjust the traveling speed to optimize feed volume levels and threshing quality. We compared and analyzed the algorithm and the traditional PID control regulation effect in the simulation experiment. The algorithm had a quicker response speed and stable accuracy. In the field trial, the average error rate was 3.4%, and the maximum error rate was 5.1%, with most data points centered around the ideal feeding rate of 3.2 kg/s. Our results showed that the algorithm’s stability, accuracy, and real-time performance met the threshing loss reduction requirements of southern China’s rice harvesting operations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.