Background: Parkinson’s disease has been identified as a risk factor for severe Coronavirus disease 2019 (COVID-19) outcomes. However, whether the significant high risk of death from COVID-19 in people with Parkinson’s disease is specific to the disease itself or driven by other concomitant and known risk factors such as comorbidities, age, and frailty remains unclear. Objective: To investigate clinical profiles and outcomes of people with Parkinson’s disease and atypical parkinsonian syndromes who tested positive for COVID-19 in the hospital setting in a multicentre UK-based study. Methods: A retrospective cohort study of Parkinson’s disease patients with a positive COVID-19 test admitted to hospital between February 2020 and July 2021. An online survey was used to collect data from clinical care records, recording patient, Parkinson’s disease and COVID-19 characteristics. Associations with time-to-mortality and severe outcomes were analysed using either the Cox proportional hazards model or logistic regression models, as appropriate. Results: Data from 552 admissions were collected: 365 (66%) male; median (inter-quartile range) age 80 (74-85) years. The 34-day mortality rate was 38.4%; male sex, increased age and frailty, Parkinson’s dementia syndrome, requirement for respiratory support and no vaccination were associated with increased mortality risk. Community-acquired COVID-19 and co-morbid chronic neurological disorder were associated with increased odds of requiring respiratory support. Hospital-acquired COVID-19 and delirium were associated with requiring an increase in care level post-discharge. Conclusions: This first, multicentre, UK-based study on people with Parkinson’s disease or atypical parkinsonian syndromes, hospitalised with COVID-19, adds and expands previous findings on clinical profiles and outcomes in this population.
Time-to-event semi-competing risk endpoints may be correlated when both events occur on the same individual. These events and the association between them may also be influenced by individual characteristics. In this article, we propose copula survival models to estimate hazard ratios of covariates on the non-terminal and terminal events, along with the effects of covariates on the association between the two events. We use the Normal, Clayton, Frank and Gumbel copulas to provide a variety of association structures between the non-terminal and terminal events. We apply the proposed methods to model semi-competing risks of graft failure and death for kidney transplant patients. We find that copula survival models perform better than the Cox proportional hazards model when estimating the non-terminal event hazard ratio of covariates. We also find that the inclusion of covariates in the association parameter of the copula models improves the estimation of the hazard ratios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.