We introduce a simple autoencoder based on hyperbolic geometry for solving standard collaborative filtering problem. In contrast to many modern deep learning techniques, we build our solution using only a single hidden layer. Remarkably, even with such a minimalistic approach, we not only outperform the Euclidean counterpart but also achieve a competitive performance with respect to the current state-of-the-art. We additionally explore the effects of space curvature on the quality of hyperbolic models and propose an efficient data-driven method for estimating its optimal value. CCS Concepts: • Information systems → Recommender systems; Collaborative filtering; • Mathematics of computing → Geometric topology; • Computing methodologies → Neural networks.
The embedding layers transforming input words into real vectors are the key components of deep neural networks used in natural language processing. However, when the vocabulary is large, the corresponding weight matrices can be enormous, which precludes their deployment in a limited resource setting. We introduce a novel way of parameterizing embedding layers based on the Tensor Train decomposition, which allows compressing the model significantly at the cost of a negligible drop or even a slight gain in performance. We evaluate our method on a wide range of benchmarks in natural language processing and analyze the trade-off between performance and compression ratios for a wide range of architectures, from MLPs to LSTMs and Transformers.
Computer vision tasks such as image classification, image retrieval, and few-shot learning are currently dominated by Euclidean and spherical embeddings so that the final decisions about class belongings or the degree of similarity are made using linear hyperplanes, Euclidean distances, or spherical geodesic distances (cosine similarity). In this work, we demonstrate that in many practical scenarios, hyperbolic embeddings provide a better alternative.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.