Our group recently characterized a cell-autonomous mammalian 12-h clock independent from the circadian clock, but its function and mechanism of regulation remain poorly understood. Here, we show that in mouse liver, transcriptional regulation significantly contributes to the establishment of 12-h rhythms of mRNA expression in a manner dependent on Spliced Form of X-box Binding Protein 1 (XBP1s). Mechanistically, the motif stringency of XBP1s promoter binding sites dictates XBP1s's ability to drive 12-h rhythms of nascent mRNA transcription at dawn and dusk, which are enriched for basal transcription regulation, mRNA processing and export, ribosome biogenesis, translation initiation, and protein processing/sorting in the Endoplasmic Reticulum (ER)-Golgi in a temporal order consistent with the progressive molecular processing sequence described by the central dogma information flow (CEDIF). We further identified GA-binding proteins (GABPs) as putative novel transcriptional regulators driving 12-h rhythms of gene expression with more diverse phases. These 12-h rhythms of gene expression are cell autonomous and evolutionarily conserved in marine animals possessing a circatidal clock. Our results demonstrate an evolutionarily conserved, intricate network of transcriptional control of the mammalian 12-h clock that mediates diverse biological pathways. We speculate that the 12-h clock is coopted to accommodate elevated gene expression and processing in mammals at the two rush hours, with the particular genes processed at each rush hour regulated by the circadian and/or tissue-specific pathways.
Endogenously tagging proteins with green fluorescent protein (GFP) enables the visualization of the tagged protein using live cell microscopy. GFP-tagging is widely utilized to study biological processes in model experimental organisms including filamentous fungi such as Aspergillus nidulans. Many strains of A. nidulans have therefore been generated with different proteins endogenously tagged with GFP. To further enhance experimental approaches based upon GFP-tagging, we have adapted the GFP Binding Protein (GBP) system for A. nidulans. GBP is a genetically encoded Llama single chain antibody against GFP which binds GFP with high affinity. Using gene replacement approaches, it is therefore possible to link GBP to anchor proteins, which will then retarget GFP-tagged proteins away from their normal location to the location of the anchor-GBP protein. To facilitate this approach in A. nidulans, we made four base plasmid cassettes that can be used to generate gene replacement GBP-tagging constructs by utilizing fusion PCR. Using these base cassettes, fusion PCR, and gene targeting approaches, we generated strains with SPA10-GBP and Tom20-GBP gene replacements. These strains enabled test targeting of GFP-tagged proteins to septa or to the surface of mitochondria respectively. SPA10-GBP is shown to effectively target GFP-tagged proteins to both forming and mature septa. Tom20-GBP has a higher capacity to retarget GFP-tagged proteins being able to relocate all Nup49-GFP from its location within nuclear pore complexes (NPCs) to the cytoplasm in association with mitochondria. Notably, removal of Nup49-GFP from NPCs causes cold sensitivity as does deletion of the nup49 gene. The cassette constructs described facilitate experimental approaches to generate precise protein-protein linkages in fungi. The A. nidulans SPA10-GBP and Tom20-GBP strains can be utilized to modulate other GFP-tagged proteins of interest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.