Air quality information such as the concentration of PM2.5 is of great significance for human health and city management. It affects the way of traveling, urban planning, government policies and so on. However, in major cities there is typically only a limited number of air quality monitoring stations. In the meantime, air quality varies in the urban areas and there can be large differences, even between closely neighboring regions. In this paper, a random forest approach for predicting air quality (RAQ) is proposed for urban sensing systems. The data generated by urban sensing includes meteorology data, road information, real-time traffic status and point of interest (POI) distribution. The random forest algorithm is exploited for data training and prediction. The performance of RAQ is evaluated with real city data. Compared with three other algorithms, this approach achieves better prediction precision. Exciting results are observed from the experiments that the air quality can be inferred with amazingly high accuracy from the data which are obtained from urban sensing.
A novel multi-scale temporal convolutional network (TCN) and long short-term memory network (LSTM) based magnetic localization approach is proposed. To enhance the discernibility of geomagnetic signals, the time-series preprocessing approach is constructed at first. Next, the TCN is invoked to expand the feature dimensions on the basis of keeping the time-series characteristics of LSTM model. Then, a multi-scale time-series layer is constructed with multiple TCNs of different dilation factors to address the problem of inconsistent time-series speed between localization model and mobile users. A stacking framework of multi-scale TCN and LSTM is eventually proposed for indoor magnetic localization.Experiment results demonstrate the effectiveness of the proposed algorithm in indoor localization.
The rapidly increasing number of smart devices deployed in the Industrial Internet of Things (IIoT) environment has been witnessed. To improve communication efficiency, edge computing-enabled Industrial Internet of Things (E-IIoT) has gained attention recently. Nevertheless, E-IIoT still cannot conquer the rapidly increasing communication demands when hundreds of millions of IIoT devices are connected at the same time. Considering the future 6G environment where smart network-in-box (NIB) nodes are everywhere (e.g., deployed in vehicles, buses, backpacks, etc.), we propose a crowdsourcing-based recruitment framework, leveraging the power of the crowd to provide extra communication resources and enhance the communication capabilities. We creatively treat NIB nodes as edge layer devices, and CrowdBox is devised using a Stackelberg game where the E-IIoT system is the leader, and the NIB nodes are the followers. CrowdBox can calculate the optimal reward to reach the unique Stackelberg equilibrium where the utility of E-IIoT can be maximized while none of the NIB nodes can improve its utility by deviating from its strategy. Finally, we evaluate the performance of CrowdBox with extensive simulations with various settings, and it shows that CrowdBox outperforms the compared algorithms in improving system utility and attracting more NIB nodes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.