One of the materials that is used widely for wind turbine blade manufacturing are fiber-reinforced composites. Although glass fiber reinforcement is the most used in wind turbine blades, the use of carbon fiber allows larger blades to be manufactured due to their better mechanical characteristics. Some turbine manufacturers are using carbon fiber in the most critical parts of the blade design. The larger rotors are exposed to complex loading conditions in service. One of the most relevant structures on a wind turbine blade is the spar cap. It is usually manufactured by means of unidirectional laminates, and one of its major failures is the delamination. The determination of material features that influence delamination initiation and advance by appropriate testing is a fundamental topic for the study of composite delamination. The fracture behavior is studied across coupons of carbon fiber reinforcement epoxy laminates. Fifteen different test conditions have been analyzed. Fracture surfaces for different mode ratios have been explored using optical microscope and scanning electron microscope. Experimental results shown in the paper for critical fracture parameters agree with the theoretically expected values. Therefore, this experimental procedure is suitable for wind turbine blade material characterizing at the initial coupon-scale research level.
The use of data driven predictive systems is becoming widespread as innovations in machine learning techniques have allowed the training of increasingly sophisticated models via the available data. The light detection and ranging (LiDAR) remote sensing technique is being increasingly applied to obtain informative terrain maps, due to its ability to collect large amounts of data with satisfactory accuracy. This paper focuses on the application of machine‐learning‐based predictive systems for the extraction of biomass information from LiDAR data. Biomass information has inmense ecological and economical value. We demonstrate the estimation of the Pinus radiata biomass in the Arratia‐Nervión region (Spain). Biomass estimation is considered a regression problem in which the ground truth for some specific sample sites is available. The promising results obtained in this study indicate that LiDAR data can be used to carry out detailed biomass mappings by the extrapolation of the models trained in this study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.