Neural architecture search (NAS) can have a significant impact in computer vision by automatically designing optimal neural network architectures for various tasks. A variant, binarized neural architecture search (BNAS), with a search space of binarized convolutions, can produce extremely compressed models. Unfortunately, this area remains largely unexplored. BNAS is more challenging than NAS due to the learning inefficiency caused by optimization requirements and the huge architecture space. To address these issues, we introduce channel sampling and operation space reduction into a differentiable NAS to significantly reduce the cost of searching. This is accomplished through a performance-based strategy used to abandon less potential operations. Two optimization methods for binarized neural networks are used to validate the effectiveness of our BNAS. Extensive experiments demonstrate that the proposed BNAS achieves a performance comparable to NAS on both CIFAR and ImageNet databases. An accuracy of 96.53% vs. 97.22% is achieved on the CIFAR-10 dataset, but with a significantly compressed model, and a 40% faster search than the state-of-the-art PC-DARTS.
Neural architecture search (NAS) proves to be among the best approaches for many tasks by generating an application-adaptive neural architectures, which are still challenged by high computational cost and memory consumption. At the same time, 1-bit convolutional neural networks (CNNs) with binarized weights and activations show their potential for resource-limited embedded devices. One natural approach is to use 1-bit CNNs to reduce the computation and memory cost of NAS by taking advantage of the strengths of each in a unified framework. To this end, a Child-Parent model is introduced to a differentiable NAS to search the binarized architecture(Child) under the supervision of a full-precision model (Parent). In the search stage, the Child-Parent model uses an indicator generated by the parent and child model accuracy to evaluate the performance and abandon operations with less potential. In the training stage, a kernel level CP loss is introduced to optimize the binarized network. Extensive experiments demonstrate that the proposed CP-NAS achieves a comparable accuracy with traditional NAS on both the CIFAR and ImageNet databases. It achieves an accuracy of 95.27% on CIFAR-10, 64.3% on ImageNet with binarized weights and activations, and a 30% faster search than prior arts.
How to cite:Please refer to published version for the most recent bibliographic citation information. If a published version is known of, the repository item page linked to above, will contain details on accessing it.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.