The epidemic character of community-associated methicillin-resistant Staphylococcus aureus, especially the geographically widespread clone USA300, is poorly understood. USA300 isolates carry a type IV staphylococcal chromosomal cassette mec (SCCmec) element conferring beta-lactam antibiotic class resistance and a putative pathogenicity island, arginine catabolic mobile element (ACME). Physical linkage between SCCmec and ACME suggests that selection for antibiotic resistance and for pathogenicity may be interconnected. We constructed isogenic mutants containing deletions of SCCmec and ACME in a USA300 clinical isolate to determine the role played by these elements in a rabbit model of bacteremia. We found that deletion of type IV SCCmec did not affect competitive fitness, whereas deletion of ACME significantly attenuated the pathogenicity or fitness of USA300. These data are consistent with a model in which ACME enhances growth and survival of USA300, allowing for genetic "hitchhiking" of SCCmec. SCCmec in turn protects against exposure to beta-lactams.
Community-associated methicillin-resistant
Staphylococcus aureus
(CA-MRSA) is epidemic in the United States, even rivaling HIV/AIDS in its public health impact. The pandemic clone USA300, like other CA-MRSA strains, expresses Panton-Valentine leukocidin (PVL), a pore-forming toxin that targets polymorphonuclear leukocytes (PMNs). PVL is thought to play a key role in the pathogenesis of necrotizing pneumonia, but data from rodent infection models are inconclusive. Rodent PMNs are less susceptible than human PMNs to PVL-induced cytolysis, whereas rabbit PMNs, like those of humans, are highly susceptible to PVL-induced cytolysis. This difference in target cell susceptibility could affect results of experimental models. Therefore, we developed a rabbit model of necrotizing pneumonia to compare the virulence of a USA300 wild-type strain with that of isogenic PVL-deletion mutant and -complemented strains. PVL enhanced the capacity of USA300 to cause severe lung necrosis, pulmonary edema, alveolar hemorrhage, hemoptysis, and death, hallmark clinical features of fatal human necrotizing pneumonia. Purified PVL instilled directly into the lung caused lung inflammation and injury by recruiting and lysing PMNs, which damage the lung by releasing cytotoxic granule contents. These findings provide insights into the mechanism of PVL-induced lung injury and inflammation and demonstrate the utility of the rabbit for studying PVL-mediated pathogenesis.
The annual incidence of community-onset MRSA disease in San Francisco is substantial, surpassing that of hospital-onset disease. USA300 is the predominant clone in both the community and hospitals. The dissemination of USA300 from the community into the hospital setting has blurred its distinction as a community-associated pathogen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.