We present several interrelated technical and empirical contributions to the problem of emotion-based music recommendation and show how they can be applied in a possible usage scenario. The contributions are (1) a new three-dimensional resonance-arousal-valence model for the representation of emotion expressed in music, together with methods for automatically classifying a piece of music in terms of this model, using robust regression methods applied to musical/acoustic features; (2) methods for predicting a listener's emotional state on the assumption that the emotional state has been determined entirely by a sequence of pieces of music recently listened to, using conditional random fields and taking into account the decay of emotion intensity over time; and (3) a method for selecting a ranked list of pieces of music that match a particular emotional state, using a minimization iteration method. A series of experiments yield information about the validity of our operationalizations of these contributions. Throughout the article, we refer to an illustrative usage scenario in which all of these contributions can be exploited, where it is assumed that (1) a listener's emotional state is being determined entirely by the music that he or she has been listening to and (2) the listener wants to hear additional music that matches his or her current emotional state. The contributions are intended to be useful in a variety of other scenarios as well.
Providing user-understandable explanations to justify recommendations could help users better understand the recommended items, increase the system’s ease of use, and gain users’ trust. A typical approach to realize it is natural language generation. However, previous works mostly adopt recurrent neural networks to meet the ends, leaving the potentially more effective pre-trained Transformer models under-explored. In fact, user and item IDs, as important identifiers in recommender systems, are inherently in different semantic space as words that pre-trained models were already trained on. Thus, how to effectively fuse IDs into such models becomes a critical issue. Inspired by recent advancement in prompt learning, we come up with two solutions: find alternative words to represent IDs (called discrete prompt learning) and directly input ID vectors to a pre-trained model (termed continuous prompt learning). In the latter case, ID vectors are randomly initialized but the model is trained in advance on large corpora, so they are actually in different learning stages. To bridge the gap, we further propose two training strategies: sequential tuning and recommendation as regularization. Extensive experiments show that our continuous prompt learning approach equipped with the training strategies consistently outperforms strong baselines on three datasets of explainable recommendation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.