Plug-in photovoltaics (PV)/battery power systems attract increasing interest due to their merits in zero fuel consumption and zero local emission. However, current optimization for the plug-in PV/battery power system only considers a single objective of minimizing lifecycle cost, which may result in increased lifecycle greenhouse gas (GHG) emission due to electricity generation from coal in some areas. The paper therefore proposes a bi-objective optimization methodology to find out an optimal trade-off between lifecycle cost and GHG emission. Non-dominated sorting genetic algorithm II is developed to explore the Pareto solution sets. An unmanned patrol boat is considered as a study case. Simulation results show that the optimal design from the bi-objective optimization gains a 12.6% reduction in lifecycle cost and a 53.8% reduction in GHG emission when compared with the conventional power system consisting of diesel engines and generators. Moreover, the optimal design achieves a 46.3% reduction in GHG emission compared with the single-objective one aimed at minimum lifecycle cost, which at the same time increases the lifecycle cost by just 0.6%. Besides, two variables (the number of PV array and the number of battery modules) are found to be the most sensitive to the contradiction between lifecycle cost and GHG emission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.