Background Telomere length (TL) and its attrition are important indicators of physiological stress and biological aging and hence may vary among individuals of the same age. This variation is apparent even in newborns, suggesting potential effects of parental factors and the intrauterine environment on TL of the growing fetus. Methods Average relative TLs of newborns (cord tissue, N = 950) and mothers (buffy coat collected at 26–28 weeks of gestation, N = 892) were measured in a birth cohort. This study provides a comprehensive analysis of the effects of heritable factors, socioeconomic status, and in utero exposures linked with maternal nutrition, cardiometabolic health, and mental well-being on the newborn TL. The association between maternal TL and antenatal maternal health was also studied. Results Longer maternal TL (β = 0.14, P = 1.99E−05) and higher paternal age (β = 0.10, P = 3.73E−03) were positively associated with newborn TL. Genome-wide association studies on newborn and maternal TLs identified 6 genetic variants in a strong linkage disequilibrium on chromosome 3q26.2 (Tag SNP-LRRC34-rs10936600: Pmeta = 5.95E−08). Mothers with higher anxiety scores, elevated fasting blood glucose, lower plasma insulin-like growth factor-binding protein 3 and vitamin B12 levels, and active smoking status during pregnancy showed a higher risk of giving birth to offspring with shorter TL. There were sex-related differences in the factors explaining newborn TL variation. Variation in female newborn TL was best explained by maternal TL, mental health, and plasma vitamin B12 levels, while that in male newborn TL was best explained by paternal age, maternal education, and metabolic health. Mother’s TL was associated with her own metabolic health and nutrient status, which may have transgenerational effects on offspring TL. Conclusions Our findings provide a comprehensive understanding of the heritable and environmental factors and their relative contributions to the initial setting of TL and programing of longevity in early life. This study provides valuable insights for preventing in utero telomere attrition by improving the antenatal health of mothers via targeting the modifiable factors. Trial registration ClinicalTrials.gov, NCT01174875. Registered on 1 July 2010
Background Adaptations in lipid metabolism are essential to meet the physiological demands of pregnancy and any aberration may result in adverse outcomes for both mother and offspring. However, there is a lack of population-level studies to define the longitudinal changes of maternal circulating lipids from preconception to postpartum in relation to cardiometabolic risk factors. Methods LC-MS/MS-based quantification of 689 lipid species was performed on 1595 plasma samples collected at three time points in a preconception and longitudinal cohort, Singapore PREconception Study of long-Term maternal and child Outcomes (S-PRESTO). We mapped maternal plasma lipidomic profiles at preconception (N = 976), 26–28 weeks’ pregnancy (N = 337) and 3 months postpartum (N = 282) to study longitudinal lipid changes and their associations with cardiometabolic risk factors including pre-pregnancy body mass index, body weight changes and glycaemic traits. Results Around 56% of the lipids increased and 24% decreased in concentration in pregnancy before returning to the preconception concentration at postpartum, whereas around 11% of the lipids went through significant changes in pregnancy and their concentrations did not revert to the preconception concentrations. We observed a significant association of body weight changes with lipid changes across different physiological states, and lower circulating concentrations of phospholipids and sphingomyelins in pregnant mothers with higher pre-pregnancy BMI. Fasting plasma glucose and glycated haemoglobin (HbA1c) concentrations were lower whereas the homeostatic model assessment of insulin resistance (HOMA-IR), 2-h post-load glucose and fasting insulin concentrations were higher in pregnancy as compared to both preconception and postpartum. Association studies of lipidomic profiles with these glycaemic traits revealed their respective lipid signatures at three physiological states. Assessment of glycaemic traits in relation to the circulating lipids at preconception with a large sample size (n = 936) provided an integrated view of the effects of hyperglycaemia on plasma lipidomic profiles. We observed a distinct relationship of lipidomic profiles with different measures, with the highest percentage of significant lipids associated with HOMA-IR (58.9%), followed by fasting insulin concentration (56.9%), 2-h post-load glucose concentration (41.8%), HbA1c (36.7%), impaired glucose tolerance status (31.6%) and fasting glucose concentration (30.8%). Conclusions We describe the longitudinal landscape of maternal circulating lipids from preconception to postpartum, and a comprehensive view of trends and magnitude of pregnancy-induced changes in lipidomic profiles. We identified lipid signatures linked with cardiometabolic risk traits with potential implications both in pregnancy and postpartum life. Our findings provide insights into the metabolic adaptations and potential biomarkers of modifiable risk factors in childbearing women that may help in better assessment of cardiometabolic health, and early intervention at the preconception period. Trial registration ClinicalTrials.gov, NCT03531658.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.