Summary: CD-HIT is a widely used program for clustering biological sequences to reduce sequence redundancy and improve the performance of other sequence analyses. In response to the rapid increase in the amount of sequencing data produced by the next-generation sequencing technologies, we have developed a new CD-HIT program accelerated with a novel parallelization strategy and some other techniques to allow efficient clustering of such datasets. Our tests demonstrated very good speedup derived from the parallelization for up to ∼24 cores and a quasi-linear speedup for up to ∼8 cores. The enhanced CD-HIT is capable of handling very large datasets in much shorter time than previous versions.Availability: http://cd-hit.org.Contact: liwz@sdsc.eduSupplementary information: Supplementary data are available at Bioinformatics online.
Summary: CD-HIT is a widely used program for clustering and comparing large biological sequence datasets. In order to further assist the CD-HIT users, we significantly improved this program with more functions and better accuracy, scalability and flexibility. Most importantly, we developed a new web server, CD-HIT Suite, for clustering a user-uploaded sequence dataset or comparing it to another dataset at different identity levels. Users can now interactively explore the clusters within web browsers. We also provide downloadable clusters for several public databases (NCBI NR, Swissprot and PDB) at different identity levels.Availability: Free access at http://cd-hit.orgContact: liwz@sdsc.eduSupplementary information: Supplementary data are available at Bioinformatics online.
The rapid advances of high-throughput sequencing technologies dramatically prompted metagenomic studies of microbial communities that exist at various environments. Fundamental questions in metagenomics include the identities, composition and dynamics of microbial populations and their functions and interactions. However, the massive quantity and the comprehensive complexity of these sequence data pose tremendous challenges in data analysis. These challenges include but are not limited to ever-increasing computational demand, biased sequence sampling, sequence errors, sequence artifacts and novel sequences. Sequence clustering methods can directly answer many of the fundamental questions by grouping similar sequences into families. In addition, clustering analysis also addresses the challenges in metagenomics. Thus, a large redundant data set can be represented with a small non-redundant set, where each cluster can be represented by a single entry or a consensus. Artifacts can be rapidly detected through clustering. Errors can be identified, filtered or corrected by using consensus from sequences within clusters.
BackgroundArtificial duplicates from pyrosequencing reads may lead to incorrect interpretation of the abundance of species and genes in metagenomic studies. Duplicated reads were filtered out in many metagenomic projects. However, since the duplicated reads observed in a pyrosequencing run also include natural (non-artificial) duplicates, simply removing all duplicates may also cause underestimation of abundance associated with natural duplicates.ResultsWe implemented a method for identification of exact and nearly identical duplicates from pyrosequencing reads. This method performs an all-against-all sequence comparison and clusters the duplicates into groups using an algorithm modified from our previous sequence clustering method cd-hit. This method can process a typical dataset in ~10 minutes; it also provides a consensus sequence for each group of duplicates. We applied this method to the underlying raw reads of 39 genomic projects and 10 metagenomic projects that utilized pyrosequencing technique. We compared the occurrences of the duplicates identified by our method and the natural duplicates made by independent simulations. We observed that the duplicates, including both artificial and natural duplicates, make up 4-44% of reads. The number of natural duplicates highly correlates with the samples' read density (number of reads divided by genome size). For high-complexity metagenomic samples lacking dominant species, natural duplicates only make up <1% of all duplicates. But for some other samples like transcriptomic samples, majority of the observed duplicates might be natural duplicates.ConclusionsOur method is available from http://cd-hit.org as a downloadable program and a web server. It is important not only to identify the duplicates from metagenomic datasets but also to distinguish whether they are artificial or natural duplicates. We provide a tool to estimate the number of natural duplicates according to user-defined sample types, so users can decide whether to retain or remove duplicates in their projects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.