The centrosome is the dominant microtubule-organizing center in animal cells. At the onset of mitosis, each cell normally has two centrosomes that lie on opposite sides of the nucleus. Centrosomes nucleate the growth of microtubules and orchestrate the efficient assembly of the mitotic spindle. Recent studies in vivo and in vitro have shown that the spindle can form even in the absence of centrosomes and demonstrate that individual cells can divide without this organelle. However, since centrosomes are involved in multiple processes in vivo, including polarized cell divisions, which are an essential developmental mechanism for producing differentiated cell types, it remains to be shown whether or not a complete organism can develop without centrosomes. Here we show that in Drosophila a centrosomin (cnn) null mutant, which fails to assemble fully functional mitotic centrosomes and has few or no detectable astral microtubules, can develop into an adult fly. These results challenge long-held assumptions that the centrosome and the astral microtubules emanating from it are essential for development and are required specifically for spindle orientation during asymmetric cell divisions.
SUMMARY Centriole duplication occurs once per cell cycle, ensuring that each cell contains two centrosomes, each containing a mother-daughter pair of tightly engaged centrioles at mitotic entry. Loss of the tight engagement between mother and daughter centrioles appears to license the next round of centriole duplication. However, the molecular mechanisms regulating this process remain largely unknown. Mutations in CDK5RAP2, which encodes a centrosomal protein, cause autosomal recessive primary microcephaly (MCPH) in humans. Here we show that CDK5RAP2 loss of function in mice causes centriole amplification with a preponderance of single, unpaired centrioles and increased numbers of daughter-daughter centriole pairs. These results indicate that CDK5RAP2 is required to maintain centriole engagement and cohesion, thereby restricting centriole replication. Early in mitosis, amplified centrosomes assemble multipolar spindles in CDK5RAP2 mutant cells. Moreover, both mother and daughter centrioles are amplified, and the excess mother centrioles template multiple primary cilia in CDK5RAP2 mutant cells.
Drosophila Rootletin organizes rootlets in sensory neurons, where it transmits multiple sensory inputs and maintains basal body cohesion, yet it is not required for cilium stability.
Summary Non-centrosomal Microtubule Organizing Centers (MTOCs) direct microtubule (MT) organization to exert diverse cell-type specific functions. In Drosophila spermatids, the giant mitochondria provide structural platforms for MT reorganization to support elongation of the extremely long sperm. However, the molecular basis for this mitochondrial MTOC and other non-centrosomal MTOCs have not been discerned. Here we report that Drosophila centrosomin (cnn) expresses two major protein variants: the centrosomal form (CnnC) and a non-centrosomal form in testes (CnnT). CnnC is established as essential for functional centrosomes, the major MTOCs in animal cells. We show that CnnT is expressed exclusively in testes by alternative splicing, and localizes to giant mitochondria in spermatids. In cell culture, CnnT targets to the mitochondrial surface, recruits the MT nucleator γ-TuRC, and is sufficient to convert mitochondria to MTOCs independent of core pericentriolar proteins that regulate MT assembly at centrosomes. We mapped two separate domains in CnnT. One that is necessary and sufficient to target it to mitochondria, and another that is necessary and sufficient to recruit γ-TuRCs and nucleate MTs. In elongating spermatids, CnnT forms speckles on the giant mitochondria that are required to recruit γ-TuRCs to organize MTs and support spermiogenesis. This molecular characterization of the mitochondrial MTOC defines a minimal molecular requirement for MTOC generation, and implicates the potent role of Cnn (or its related) proteins in the direct regulation of MT assembly and organization of non-centrosomal MTOCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.